
User manual for ECHAM6

Sebastian Rast1, Renate Brokopf, Monika Esch,
Veronika Gayler, Ingo Kirchner, Luis Kornblüh,

Andreas Rhodin, Uwe Schulzweida

February 22, 2012, (2012.02-22), version echam–6.1.00–guide–2.0

1Max Planck Institute of Meteorology, Hamburg, e–mail: sebastian.rast@zmaw.de

ii

Contents

1 Introduction 1

2 User guide 3
2.1 Compiling ECHAM6 . 3
2.2 Input namelists . 3

2.2.1 Input namelists in file namelist.echam 3
2.2.1.1 Namelist cfdiagctl . 5
2.2.1.2 Namelist co2ctl . 6
2.2.1.3 Namelist columnctl . 6
2.2.1.4 Namelist debugsctl . 6
2.2.1.5 Namelist dynctl . 7
2.2.1.6 Namelist gwsctl . 9
2.2.1.7 Namelist hratesctl . 11
2.2.1.8 Namelist mvstreamctl . 12
2.2.1.9 Namelist ndgctl . 12
2.2.1.10 Namelist nmictl . 16
2.2.1.11 Namelist parctl . 16
2.2.1.12 Namelist physctl . 17
2.2.1.13 Namelist radctl . 18
2.2.1.14 Namelist runctl . 22
2.2.1.15 Namelist submdiagctl . 26
2.2.1.16 Namelist submodelctl . 29
2.2.1.17 Namelist tdiagctl . 31

2.2.2 Input namelists in file namelist.jsbach 32
2.2.3 Namelist albedo ctl . 33
2.2.4 Namelist bethy ctl . 33
2.2.5 Namelist cbalance ctl . 33
2.2.6 Namelist climbuf ctl . 34
2.2.7 Namelist dynveg ctl . 34
2.2.8 Namelist jsbach ctl . 35
2.2.9 Namelist soil ctl . 36
2.2.10 Input namelists in other files . 37

2.2.10.1 Namelist mvctl . 37
2.3 Input data . 38
2.4 Output files and variables . 43

2.4.1 Output file echam . 44
2.4.2 Output file forcing . 49
2.4.3 Output file tdiag . 50

iii

iv CONTENTS

2.5 Run scripts . 52
2.5.1 Systematic technical testing of ECHAM6 52

2.5.1.1 System requirements . 54
2.5.1.2 Description of the scripts . 54
2.5.1.3 Usage . 55

2.5.2 Automatic generation of runscripts for ECHAM6 on blizzard 57
2.5.2.1 Directory structure and file systems on blizzard.dkrz.de . . . 57
2.5.2.2 Generation of run scripts . 57

2.6 Postprocessing . 58
2.6.0.3 Software requirements . 58
2.6.0.4 Preparation of the ECHAM6 output data 58
2.6.0.5 Generation of plots and tables 59

3 Technical Documentation 63
3.1 Parallelization . 63

3.1.1 General description . 63
3.1.2 Recipe for writing or modifying parallel routines 64

3.1.2.1 Physical parameterizations . 64
3.1.2.2 Input/Output . 65

3.1.3 Decomposition (mo decompose) . 67
3.1.3.1 Information on the whole model domain 68
3.1.3.2 Information valid for all processes of a model instance 69
3.1.3.3 General Local Information . 69
3.1.3.4 Grid space decomposition . 69
3.1.3.5 Fourier space decomposition . 70
3.1.3.6 Legendre space decomposition 70
3.1.3.7 Spectral space decomposition 71

3.1.4 Gather, Scatter and Low Level Transposition Routines (mo transpose) . 71
3.1.4.1 Gather and Scatter routines (gather xx, scatter xx) 71
3.1.4.2 Transposition routines (tr xx yy) 73

3.1.5 High Level Transposition Routines (mo call trans) 74
3.1.6 Global operations (mo global op) . 76

3.2 Data structures and memory use . 77
3.2.1 Output Streams and Memory Buffer . 77

3.2.1.1 Functionality . 77
3.2.1.2 Usage . 77
3.2.1.3 Create an output stream . 78
3.2.1.4 Add a field to the output stream 79
3.2.1.5 Change of default values for optional arguments 82
3.2.1.6 Access to stream elements . 82
3.2.1.7 Doubling of stream element entries 83
3.2.1.8 Definition of new dimensions 83

3.3 Date and time variables . 84
3.3.1 Date–time variables in ECHAM6 . 84
3.3.2 Usage of DT–variables . 85
3.3.3 Information about actual date and time in ECHAM6. 86
3.3.4 Variables describing repeated events. 87

3.4 Submodel interface . 87

CONTENTS v

3.4.1 Introduction . 87
3.4.2 Submodel Interface . 88

3.4.2.1 Interface of init subm . 90
3.4.2.2 Interface of init subm memory 90
3.4.2.3 Interface of stepon subm . 90
3.4.2.4 Interface of physc subm 1 . 90
3.4.2.5 Interface of radiation subm 1 92
3.4.2.6 Interface of radiation subm 2 93
3.4.2.7 Interface of vdiff subm . 94
3.4.2.8 Interface of rad heat subm . 97
3.4.2.9 Interface of physc subm 2 . 98
3.4.2.10 Interface of cuflx subm . 101
3.4.2.11 Interface of cloud subm . 103
3.4.2.12 Interface of physc subm 3 . 105
3.4.2.13 Interface of physc subm 4 . 108
3.4.2.14 Interface of free subm memory 109

3.4.3 Tracer interface . 109
3.4.3.1 Request a new tracer . 110
3.4.3.2 Access to tracers with get tracer 113
3.4.3.3 Tracer list data type . 113

vi CONTENTS

List of Tables

2.1 Namelist cfdiagctl . 6
2.2 Namelist co2ctl . 6
2.3 Namelist debugsctl . 7
2.4 Namelist dynctl . 7
2.5 Namelist gwsctl . 9
2.6 Namelist mvstreamctl . 12
2.7 Namelist ndgctl . 12
2.8 Namelist nmictl . 16
2.9 Namelist parctl . 17
2.10 Namelist physctl . 17
2.11 Namelist radctl . 18
2.12 Namelist runctl . 23
2.13 Namelist submdiagctl . 26
2.14 Namelist submodelctl . 29
2.15 Variables of tdiagctl . 31
2.16 Namelist tdiagctl . 31
2.17 Namelist albedo ctl . 33
2.18 Namelist bethy ctl . 33
2.19 Namelist cbalance ctl . 33
2.19 cbalance ctl — continued . 34
2.20 Namelist climbuf ctl . 34
2.21 Namelist dynveg ctl . 35
2.22 Namelist jsbach ctl . 35
2.22 jsbach ctl — continued . 36
2.23 Namelist soil ctl . 36
2.23 soil ctl — continued . 37
2.24 Namelist mvctl . 37
2.25 Initial conditions . 39
2.26 Climatological boundary conditions . 39
2.27 Transient boundary conditions . 41
2.28 Parameter files . 42
2.29 Output files . 43
2.30 Output file echam . 44
2.31 Output file forcing . 49
2.32 Output file tdiag . 50
2.33 Variables of test echam6.sh . 55
2.34 Automatic run script generation . 57
2.35 Variables of after.sh . 59

vii

viii LIST OF TABLES

2.36 Variables of POSTJOB . 59
2.37 Variables of POSTJOBdiff . 60

3.1 Predefined dimensions . 84
3.2 Submodel interface . 88
3.3 Parameters of stepon subm . 90
3.4 Parameters of physc subm 1 . 91
3.5 Parameters of radiation subm 1 . 92
3.6 Parameters of radiation subm 2 . 94
3.7 Parameters of vdiff subm . 96
3.8 Parameters of rad heat subm . 98
3.9 Parameters of physc subm 2 . 99
3.10 Parameters of cuflx subm . 102
3.11 Parameters of cloud subm . 104
3.12 Parameters of physc subm 3 . 106
3.13 Parameters of physc subm 4 . 109

Chapter 1

Introduction

The ECHAM6 model is a program for the interactive calculation of the general circulation. This
manual contains a user guide of ECHAM6 (chapter 2) including a description of the compilation
procedure on the supercomputer platform blizzard at DKRZ Hamburg (section 2.1), a descrip-
tion of the input namelists (section 2.2), input files (section 2.3), and ouput files (section 2.4),
a description of example run scripts (section 2.5), and postprocessing scripts (section 2.6). We
restrict our description to the supercomputer platform blizzard at DKRZ in Hamburg. Perform-
ing a simulation on other computer platforms requires the same input data, but the compiling
procedure and the directory structure for output in particular, will be different.
Chapter 3 contains a short description of the code of ECHAM6 and is intended to be a guide for
people who work with the source code of the atmosphere part of ECHAM6. An introduction to
the ECHAM6–code with explanations will become available in form of a lecture soon (“Using and
programming ECHAM6 — a first introduction”).
This description is valid for version echam–6.1.00.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

User guide

2.1 Compiling ECHAM6

The following commands have to be executed in order to compile the ECHAM6 model on the
supercomputer platform blizzard at Deutsches Klimarechenzentrum (DKRZ):

• Checkout a model version with command:
svn checkout http://svn.zmaw.de/svn/echam6/tags/echam-<tag number>
of a certain tagged version.

• Load the appropriate compiler version used for ECHAM6, e.g.:
module load IBM/xlf13.1.0.2

• Go into the directory echam-<tag number> and execute the command
./configure --with-openmp

• Start the actual compilation with the command
make

2.2 Input namelists

2.2.1 Input namelists in file namelist.echam

In Fortran, you can provide the values of input variables that are organized in namelists,
specifying name and value of each variable. Several namelists are used to specify the input
of ECHAM6. Some of the namelists are for the atmospheric part and have to be written into
the file namelist.echam, others determine input variables of the land surface model JSBACH
and have to be written into namelist.jsbach. The atmospheric part can accept the following
namelists in namelist.echam (alphabetical order):

cfdiagctl: CFMIP dignostics.

co2ctl: interactive CO2 budget calculation.

columnctl: single column model.

3

4 CHAPTER 2. USER GUIDE

debugsctl: creates a stream for grid point variables that can be written to output easily (for
debugging).

dyctl: parameters for atmosphere dynamics.

gwsctl: gravity wave parameterisation.

hratesctl: diagnostic of heating rates.

mvstreamctl: variables controlling output of mean values.

nmictl: normal mode analysis of waves.

ndgctl: variables which are related to the nudging of the model, i.e. to the relaxation method
constraining the meteorological variables divergence, vorticity, temperature and pressure
to externally given values.

parctl: parameters concerning the parallel configuration of model.

physctl: variables related to the physics calculation like switching on/off radiation, diffusion,
convection, surface exchange, . . .

radctl: variables for controlling the radiation calculation.

runctl: contains variables concerning the start and the end of a simulation.

submdiagctl: submodel diagnostics.

submodelctl: namelists for registration of submodels in ECHAM6.

tdiagctl: tendency diagnostic.

The syntax for each namelist in namelist.echam is:

Listing 2.1: namelist syntax

& <namelist name >

<varname > = <value >

/

Remark: The mere presence of a certain variable in a certain namelist does not mean that
the action associated with this variable really works properly or works at all.
Variables describing repeated events have a special format (type “special” in the following ta-
bles):
{interval}, {unit}, {adjustment}, {offset}
where {interval} is a positive integer number, {unit} is one of ’steps’, ’seconds’,
’minutes’, ’hours’, ’days’, ’months’, ’years’, {adjustment} is one of ’first’, ’last’,
’exact’, ’off’, and {offset} is an integer number giving the offset with respect to the initial
date of the simulation in seconds. A detailed description of the control of time events can be
found in the lecture “Using and programming ECHAM6 — a first introduction” by S. Rast. The
variable list is given in alphabetical order even if the most important variables are not at the
first place in this case.

2.2. INPUT NAMELISTS 5

2.2.1.1 Namelist cfdiagctl

This namelists contains only one parameter to switch on or off the CFMIP diagnostics of
3–dimensional fluxes.

6 CHAPTER 2. USER GUIDE

Table 2.1: Namelist cfdiagctl

Variable type Explanation default
locfdiag logical switches on/off CFMIP di-

agnostic output of convec-
tive mass flux and 3-D ra-
diation fluxes

.FALSE.

2.2.1.2 Namelist co2ctl

This namelist controls the behaviour of the CO2 submodel. This submodel is not a simple
submodel like the transport of some gas phase species would be because the CO2 module
interacts with the JSBACH surface and vegetation model. In this namelist, the behaviour of
the CO2 submodel in the atmosphere simulated by ECHAM6 and the interaction with the ocean
and soil simulated by JSBACH can be controlled.

Table 2.2: Namelist co2ctl

Variable type Explanation default
lco2 flxcor logical switches on/off flux correc-

tion for exact mass balance
.TRUE.

lco2 mixpbl logical switches on/off CO2 mixing
in planetary boundary layer

.TRUE.

lco2 2perc logical switches on/off limitation of
relative CO2 tendency to
2%

.FALSE.

lco2 emis logical switches on/off reading pre-
scribed CO2 emissions from
a file

.FALSE.

lco2 clim logical switches on/off treating the
CO2 concentration as a
climatological quantity not
being transported

.FALSE.

lco2 scenario logical switches on/off reading CO2

concentrations from a cer-
tain greenhouse gas scenario

.FALSE. but

.TRUE. if
ighg=1 and
lco2=.FALSE.

2.2.1.3 Namelist columnctl

This namelist controls the behaviour of the column model. It is an old version of the column
model that is not working and has to be replaced by a newer version.

2.2.1.4 Namelist debugsctl

The debug stream is meant to provide a quick and easy tool to the user of ECHAM6 that allows
him to write any 2d– or 3d–gridpoint variable to an extra stream for debugging. A detailed

2.2. INPUT NAMELISTS 7

description can be found in the document cr2009 03 31 (can be provided by S. Rast (sebas-
tian.rast@zmaw.de)).

Table 2.3: Namelist debugsctl

Variable type Explanation default
nddf integer number of 3d–fields created

in addition to the default
fields

0

nzdf integer number of 2d–fields created
in addition to the default
fields

0

putdebug stream special output frequency of debug
stream

6, ’hours’,

’first’, 0

2.2.1.5 Namelist dynctl

With the help of these namelist parameters, the (large scale) dynamics of the atmosphere can
be controlled.

Table 2.4: Namelist dynctl

Variable type Explanation default
apsurf double prec fixed global mean of sur-

face pressure in Pa fixing
the mass of the dry atmo-
sphere

98550.0

damhih double prec extra diffusion in the middle
atmosphere

1000.

table continued on next page

8 CHAPTER 2. USER GUIDE

Table 2.4: dynctl — continued

dampth double prec damping time in hours
for the horizontal diffusion
of vorticity (linear square
Laplacian), divergence, and
temperature. Depends on
the spectral resolution nn

nn=21,

lmidatm=.FALSE.:
6.0, 15.0 if
nlev=11

nn=21,

lmidatm=.TRUE.:
192.0

nn=31: 12.0,
15.0 if nlev=11
nn=42: 9.0
nn=63: 7.0
nn=85: 5.0
nn=106: 3.0
nn=127: 1.5
nn=159: 2.0
nn=213: 2.0
nn=255: 0.5
nn=319: 1.0

diagdyn special frequency for diagnostic
output of quantities de-
scribing the dynamics of
the atmosphere

5, ’days’,

’off’, 0

diagvert special frequency for special (all
layers) diagnostic output
of quantities describing the
dynamics of the atmosphere

5, ’days’,

’off’, 0

enspodi double prec factor by which upper
sponge layer coefficient is
increased from one layer to
the adjacent layer above

1.0

enstdif double prec factor by which strato-
spheric horizontal diffusion
is increased from one layer
to the adjacent layer above

1.0

eps double prec coefficient in the Robert–
Asselin time filter

0.1

hdamp double prec damping factor for strong
stratospheric damping

1.0

ldiahdf logical switches on/off statistical
analysis of horizontal diffu-
sion

.FALSE.

lumax logical switches on/off the printing
of information on maximum
wind speeds

.FALSE.

lzondia logical purpose unknown .FALSE.

table continued on next page

2.2. INPUT NAMELISTS 9

Table 2.4: dynctl — continued

nlvspd1 integer model layer index of upper-
most layer of upper sponge

1

nlvspd2 integer model layer index of lowest
layer of upper sponge

1

nlvstd1 integer model layer index of upper-
most layer at which strato-
spheric horizontal diffusion
is enhanced

1

nlvstd2 integer model layer index of low-
est layer at which strato-
spheric horizontal diffusion
is enhanced

1

ntrn(1:nlev) integer layer and resolution de-
pendent critical wave num-
bers for strong stratospheric
damping

see setdyn.f90

spdrag double prec coefficient for upper sponge
layer in 1/s

0.0, if
lmidatm=.TRUE.:
0.926 × 10−4

(see Tab. 2.12
vcheck double prec threshold value for check of

high windspeed in m/s
200.0

if
lmidatm=.TRUE.

(see Tab. 2.12:
235.0

vcrit double prec critical velocity above which
horizontal diffusion is en-
hanced in m/s. Depends on
the spectral resolution nn

nn=106: 68.0
all other nn:
85.0

2.2.1.6 Namelist gwsctl

This namelist controls the settings for the gravity wave drag parameterization.

Table 2.5: Namelist gwsctl

Variable type Explanation default
emiss lev integer model layer index counted

from the surface at which
gravity waves are emit-
ted. This number depends
on the vertical resolution
and corresponds to a model
layer that is at roughly
600 hPa in the standard at-
mosphere.

nlev=39: 7
nlev=199: 26
all other nlev:
10

table continued on next page

10 CHAPTER 2. USER GUIDE

Table 2.5: gwsctl — continued

front thres double prec minimum value of the fron-
togenesis function for which
gravity waves are emitted
from fronts in (K/m)2/h

0.12

iheatcal integer controls upper atmosphere
processes associated with
gravity waves:
iheatcal=1: calculate
heating rates and diffusion
coefficient in addition to
momentum flux deposition
iheatcal=2: momentum
flux deposition only

1

kstar double prec typical gravity wave hori-
zontal wave number

5× 10−5

lat rmscon hi double prec latitude above which extra-
tropical gravity wave source
is used. Is only relevant if
lrmscon lat=.TRUE.

10.0

lat rmscon lo double prec latitude below which trop-
ical gravity wave source
is used. Is only relevant
if lrmscon lat=.TRUE..
There is a linear in-
terpolation between
lat rmscon lo and
lat rmscon hi degrees
N and S, respectively,
between the values given
by rmscon lo (associated
with the tropical gravity
wave parameterization) and
rmscon hi associated with
the extratropical gravity
wave parameterization

5.0

lextro logical switches on/off the Doppler
spreading extrowave param-
eterization by Hines

.TRUE.

lfront logical switches on/off gravity
waves emerging from fronts
and the background. Pa-
rameterization by Charron
and Manzini

.TRUE.

table continued on next page

2.2. INPUT NAMELISTS 11

Table 2.5: gwsctl — continued

lozpr logical switches on/off the back-
ground enhancement of
gravity waves associated
with precipitation by
Manzini et al.. Does not
work with ECHAM6.

.FALSE.

lrmscon lat logical switches on/off latitude de-
pendent rmscon as defined
in setgws. May be over-
written by lfront=.TRUE.

or lozpr=.TRUE.

.FALSE.

m min double prec minimum bound in vertical
wave number

0.0

pcons double prec factor for background en-
hancement associated with
precipitation

4.75

pcrit double prec critical precipitation value
above which root mean
square gravity wave wind
enhancement is applied in
mm/d

5.0

rms front double prec root mean square frontal
gravity wave horizontal
wave number in 1/m

2.0

rmscon double prec root mean square gravity
wave wind at lowest layer in
m/s

1.0

rmscon hi double prec root mean square grav-
ity wave wind at lowest
layer in m/s for extra-
tropical gravity wave
source. Is only relevant if
lrmscon lat=.TRUE.

1.0

rmscon lo double prec root mean square grav-
ity wave wind at low-
est layer in m/s for
tropical gravity wave
source. Is only relevant
if lrmscon lat=.TRUE..
Depends on the spectral
resolution nn

nn=31: 1.0
nn=63: 1.2
nn=127: 1.05

but 1.1 if
lcouple=.TRUE.

(see Tab. 2.12)
any other nn:
1.1

2.2.1.7 Namelist hratesctl

This namelist is obsolete since its functionality is included in tdiagctl (see section 2.2.1.17).

12 CHAPTER 2. USER GUIDE

2.2.1.8 Namelist mvstreamctl

Using this namelist, the online calculation of mean values of non–accumulated grid point vari-
ables of any ouput stream is possible. For each stream, you can ask for one additional stream
containing the mean values of a subset of variables of this stream. The namelist mvstreamctl
controls which output streams will be doubled. The ouput of mean values of trace species
concentrations are written to the ouput stream tracerm. This namelist works together with
the namelist mvctl described in section 2.2.10.1. Additional documentation can be found in
cr2010 07 28 provided by S. Rast (sebastian.rast@zmaw.de).

Table 2.6: Namelist mvstreamctl

Variable type Explanation default
m stream name(256,1:50) character List of names of streams for

the elements of which mean
values shall be calculated.
Note that a maximum of
50 output stream is allowed
(including the mean value
streams).

empty string

2.2.1.9 Namelist ndgctl

This namelist controls all variables that are relevant for nudging, i.e. relevant for a simulation
mode in which the spectral 3d–temperature, vorticity, divergence, surface pressure, and sur-
face temperature can be constrained to external fields obtained e.g. from the assimilation of
observations. It has to be underlined that constraining the surface temperature may lead to
wrong sea ice coverage since the presence of sea ice is diagnosed from the surface tempera-
ture directly without taking into account any hysteresis effects (see cr2008 08 11 by S. Rast,
sebastian.rast@zmaw.de).

Table 2.7: Namelist ndgctl

Variable type Explanation default
dt nudg start(1:6)integer defines the beginning of the nudging

in the experiment. Is of the form
yy,mo,dy,hr,mi,se (year, month, day,
hour, minute, second)

0,0,0,0,0,0

dt nudg stop(1:6) integer defines the date at which nudging
stops in a simulation. Is of the form
yy,mo,dy,hr,mi,se (year, month, day,
hour, minute, second)

0,0,0,0,0,0

table continued on next page

2.2. INPUT NAMELISTS 13

Table 2.7: ndgctl — continued

inudgformat integer format of nudging input files
inudgformat = 0: old CRAY format
input files
inudgformat = 2: netcdf format input
file

0

ldamplin logical linear damping (ldamplin = .true.)
or damping with a parabolic function
(ldamplin = .false.) of the nudging
efficiency between two synoptic times
at which nudging data sets are given

.true.

lnudgdbx logical .true. for additional diagnostic out-
put about nudging, .false. otherwise

.false.

lnudgcli logical lnudgcli = .true.: ECHAM6 ignores the
information about the year in the nudg-
ing data file and reads nudging data in
a cyclic way. Consequently, for each
model year, the same nudging data are
read.
lnudgcli = .false.: The informa-
tion about the year is included in the
nudging procedure, the data to which
the model is constrained depend on the
year.

.false.

lnudgfrd logical lnudgfrd = .true.: normal mode fil-
tering is done at reading the data
lnudgfrd = .false.: normal mode fil-
tering is done elsewhere. Works only
together with lnmi=.true.

.false.

lnudgimp logical lnudgimp = .true.: implicit nudging
lnudgimp = .false.: explicit nudging

.true.

table continued on next page

14 CHAPTER 2. USER GUIDE

Table 2.7: ndgctl — continued

lnudgini logical lnudgini = .false.: ECHAM6 starts or
restarts a simulation for a certain ex-
periment from the date given in the
namelist by dt start or the restart
date in the restart file
lnudgini = .true.: If lresume =
.false., the model starts the simu-
lation at the date of the first nudg-
ing data set being in the nudging
files the names of which correspond
to dt nudge start. There must be
nudging files having a file name cor-
responding to dt nudge start. If
lresume=.true., the model starts its
run at the first date being in the nudg-
ing data files the file names of which
correspond to the next date (next
time step) of the rerun date.

.false.

lnudgpat logical lndgpat = .true.: pattern nudging.
Does not work properly, to be removed
lndgpat = .false: otherwise

.false.

lnudgwobs logical .true. for storing additional nudging
reference fields, .false. otherwise

.false.

lsite logical switches on/off the Systematic Initial
Tendency Error diagnostic

.false.

ltintlin logical ltintlin = .true.: linear time inter-
polation
ltintlin = .false. for cubic spline
time interpolation between two synop-
tic times at which nudging data sets are
given

.true.

ndg file div(256) character file name template for the file contain-
ing the nudging data for the divergence

—

ndg file nc(256) character file name template for netcdf format file
containing all nudging data (tempera-
ture, logarithm of surface pressure, di-
vergence and vorticity)

—

ndg file sst(256) character file name template for file containing
the sea surface temperature

—

ndg file stp(256) character file name template for the file contain-
ing the nudging data for the tempera-
ture and the logarithm of the surface
pressure

—

ndg file vor(256) character file name template for the file contain-
ing the nudging data for the vorticity

—

table continued on next page

2.2. INPUT NAMELISTS 15

Table 2.7: ndgctl — continued

ndg freez double prec temperature at which sea water is as-
sumed to freeze in Kelvin

271.65

nsstinc integer treatment of the sea surface tempera-
ture (sst): read new sst data set each
nsstinc hours. A value of 0 means
that sst is not used and prevents the
model to produce too low sea ice cov-
erage when nudging since sea ice would
be detected only if temperatures drop
below ndg freez

0

nsstoff integer read the first sst data at hour nsstoff
after the beginning of the nudging

12

nudgd(1:80) double prec the relaxation time for each model layer
for the nudging of the spectral diver-
gence is given by 1/(nudgd × 10−5)s.
Note the maximum of 80 layers!

0.5787(1:80)/s
corresponding to
48 hours

nudgdamp double prec the nudging between two synoptic
times will be reduced to nudgdamp.
Consequently, nudgdamp=1.0 means
that nudging will be effective at 100%
at every time step, nudgdamp=0.0
means that the nudging will be
switched off somewhere between two
synoptic times at which nudging data
are available

1.0

nudglmax integer highest index of the model layer at
which nudging is performed. Note the
maximum of 80 layers!

80

nudglmin integer lowest index of the model layer at which
nudging is performed

1

nudgp double prec the relaxation time for the nudging of
the logarithm of the surface pressure is
given by 1/(nudgp× 10−5) s

1.1574/s corre-
spondig to 24
hours

nudgdsize double prec fraction of the synoptic time interval af-
ter which only the fraction nudgdamp

is applied in the nudging procedure.
If nudgdsize < 0.5, the minimum is
reached after a fraction of nudgdsize

of the synoptic time interval. This
minimum nudging level is then main-
tained until the model time reaches the
next synoptic time step minus the frac-
tion nudgdsize of the synoptic time in-
terval. Then, the nudging strength is
starting to increase again

0.5

table continued on next page

16 CHAPTER 2. USER GUIDE

Table 2.7: ndgctl — continued

nudgsmax integer highest nudged wavenumber. Note
the restriction to model resolution not
higher than T106!

106

nudgsmin integer Index of lowest nudged wavenumber
minus one. This means, that with
nudgsmin = 0, the spectral coefficient
0 (global average) is not nudged

0

nudgt(1:80) double prec the relaxation time for each model layer
for the nudging of the spectral temper-
ature is given by 1/(nudgt × 10−5)s.
Note the maximum of 80 layers!

1.1574(1:80)/s
corresponding to
24 hours

nudgtrun integer mode of selection of spectral
coefficients for nudging (see
mo nudging init.f90)

0

nudgv(1:80) double prec the relaxation time for each model layer
for the nudging of the spectral vorticity
is given by 1/(nudgv×10−5)s. Note the
maximum of 80 layers!

4.6296(1:80)/s
corresponding to 6
hours

2.2.1.10 Namelist nmictl

This is the namelist to control the normal mode analysis.

Table 2.8: Namelist nmictl

Variable type Explanation default
dt nmi start(1:6)integer start date of the NMI procedure. Is

of the form yy,mo,dy,hr,mi,se (year,
month, day, hour, minute, second)

0,0,0,0,0,0

lnmi cloud logical run initialization including clouds .TRUE.

ntdia integer number of time steps of accumulation
interval for diabatic tendencies

8

ntiter integer number of time steps in an iteration in-
terval

2

ntpre integer number of time steps of pre–integration
interval

2

pcut double prec cut off period in hours (used for nudg-
ing)

12.0

pcutd double prec cut off period in hours (used for initial-
ization)

6.0

2.2.1.11 Namelist parctl

This namelist controls the parallelization of the ECHAM6 program.

2.2. INPUT NAMELISTS 17

Table 2.9: Namelist parctl

Variable type Explanation default
db host(132) character hostname of db server of timing

database
’’

lunitrans logical switches on/off the use of the UNI-
TRANS module for transposes

.FALSE.

lunitrans datatypeslogical switches on/off MPI data types in UNI-
TRANS transposes

.TRUE.

lunitrans debug logical switches on/off the debugging of the
UNITRANS calls

.FALSE.

network logger(132)character hostname for network logging ’’

nproca integer number of processors for set A division
of earth

1

nprocb integer number of processors for set B division
of earth

1

nprocio integer number of processors used for I/O, not
yet functional

0

2.2.1.12 Namelist physctl

This namelist controls the physics calculations in ECHAM6. These are mainly calculations in the
grid point space with parametrized equations for convection, diffusion, gravity waves, and the
exchange of energy and mass at the surface of the earth.

Table 2.10: Namelist physctl

Variable type Explanation default
iconv integer switch for convection scheme:

iconv = 1: Nordeng
iconv = 2: Tiedtke
iconv = 3: Hybrid

1

lcdnc progn logical switches on/off prognostic cloud
droplet number concentration

.false.

lcond logical switches on/off large scale condensa-
tion scheme

.true.

lconv logical switches on/off convection .true.

lconvmassfix logical switches on/off aerosol mass fixer in
convection (obsolete?)

.true.

lcover logical switches on/off Tompkins cloud cover
scheme

.true.

lgwdrag logical switches on/off gravity wave drag
scheme

.true. for all spec-
tral resolutions, ex-
cept T21 for which
it is .false.

table continued on next page

18 CHAPTER 2. USER GUIDE

Table 2.10: physctl — continued

lice logical switches on/off sea–ice temperature
calculation

.true.

lice supersat logical switches on/off saturation over ice for
cirrus clouds (former icnc = 2)

.false.

lmfpen logical switches on/off penetrative convection .true.

lphys logical switches on/off the parameterisation of
diabatic processes

.true.

lrad logical switches on/off radiation calculation .true.

lsurf logical switches on/off surface–atmosphere ex-
changes

.true.

lvdiff logical switches on/off vertical diffusion pro-
cesses

.true.

nauto integer autoconversion scheme (not yet imple-
mented)

1

ncd activ integer type of cloud droplet activation scheme
(not yet implemented)

0

ncvmicro integer microphysics scheme in convection pa-
rameterization (not yet implemented)

0

2.2.1.13 Namelist radctl

The namelist radctl controls the radiation calculation, in particular the frequency of the calls
of the full radiation scheme, and which greenhouse gas concentrations and aerosol properties
are taken into account. See the scientific documentation of ECHAM6 for futher details. For
some namelist variables, special documentation exists and can be provided by S. Rast (se-
bastian.rast@zmaw.de): 3d-ozone climatology (cr2010 04 08), CO2 submodel (cr2009 12 10),
stratospheric aerosols by T. Crowley or HAM (cr2011 03 23), tropospheric aerosols by S. Kinne
(cr2009 01 09), variable solar irradiance (cr2010 04 01), volcanic aerosols by G. Stenchikov
(cr2010 03 15).

Table 2.11: Namelist radctl

Variable type Explanation default
cecc double prec eccentricity of the orbit of the earth 0.016715

cfcvmr(1:2) double prec CFC volume mixing ratios for CFC11
and CFC12 if icfc=2

252.8× 10−12,
466.2× 10−12

ch4vmr double prec CH4 volume mixing ratio (mole frac-
tion) for ich4=2,3

1693.6× 10−9

clonp double prec longitude of perihelion measured from
vernal equinox in degrees

282.7

co2vmr double prec CO2 volume mixing ratio (mole frac-
tion) for ico2=2

353.9× 10−06

cobld double prec obliquity of the orbit of the earth in
degrees

23.441

table continued on next page

2.2. INPUT NAMELISTS 19

Table 2.11: radctl — continued

fco2 double prec if an external co2 scenario (ighg = 1

and ico2 = 4) is used, the CO2 con-
centrations are multiplied by fco2

1.

iaero integer iaero = 0: the aerosol concentrations
are set to zero in the radiation compu-
tation
iaero = 1: prognostic aerosol of a sub-
model (HAM)
iaero = 2: climatological Tanre
aerosols
iaero = 3: aerosol climatology com-
piled by S. Kinne
iaero = 5: aerosol climatology com-
piled by S. Kinne complemented with
the volcanic aerosols of G. Stenchikov
iaero = 6: aerosol climatology com-
piled by S. Kinne complemented with
the volcanic aerosols of G. Stenchikov
plus additional (stratospheric) aerosols
from submodels like HAM. The ad-
ditional aerosol optical properties are
computed from effective radii and the
aerosol optical depth at 550 nm, both
quantities provided by external files
with the help of a lookup table by
S. Kinne (b30w120), see Tab. 2.28
iaero = 7: aerosol climatology com-
piled by S. Kinne complemented by the
volcanic aerosols by T. Crowley that
are computed using the lookup table by
S. Kinne (b20w120), see Tab. 2.28
There is no iaero = 4.

2

icfc integer icfc = 0: all chloro–fluoro–carbon
(CFC) concentrations are set to zero for
the radiation computation
icfc = 1: transported CFCs by any
submodel (not yet implemented)
icfc = 2: uniform volume mixing ra-
tios as defined in the 2–element vector
cfcvmr(1:2) are used for CFC11 and
CFC12, respectively
icfc = 4: uniform volume mixing ra-
tios for a specific scenario defined by
ighg are used in the radiation compu-
tation

2

table continued on next page

20 CHAPTER 2. USER GUIDE

Table 2.11: radctl — continued

ich4 integer ich4 = 0: CH4 concentration is set to
zero for the radiation computation
ich4 = 1: transported CH4 by any sub-
model (not yet implemented)
ich4 = 2: uniform volume mixing ra-
tio ch4vmr of methane used in radiation
computation
ich4 = 3: in the troposphere a volume
mixing ratio ch4vmr with a decay in the
layers above the troposphere is used in
the radiation compution
ich4 = 4: a uniform volume mixing ra-
tio for a certain scenario defined by the
parameter ighg is used in the radiation
computation

3

ico2 integer ico2 = 0: CO2 concentration set to
zero for the radiation computation
ico2 = 1: interactively calculated CO2

volume mixing ratio is used with a start
value of co2vmr
ico2 = 2: uniform volume mixing ratio
co2vmr used in radiation computation
ico2 = 4: uniform volume mixing ratio
for a certain scenario run defined by the
ighg parameter is used

2

ighg integer ighg = 0: no specific scenario is chosen
ighg = 1: a certain scenario of green-
house gas volume mixing ratios is used.
Caution: the variables icfc, ich4,
ico2, in2o have to be set to the values
corresponding to the usage of a scenario
in that case

ih2o integer ih2o = 0: H2O is not taken into ac-
count in the radiation computation, i.e.
specific humidity, cloud water, cloud ice
are all set to zero for the radiation com-
putation
ih2o = 1: use prognostic specific hu-
midity, cloud water and cloud ice in ra-
diation computation

1

table continued on next page

2.2. INPUT NAMELISTS 21

Table 2.11: radctl — continued

in2o integer in2o = 0 : the N2O concentration is
set to zero for the radiation computa-
tion
in2o = 1: transported N2O by any
submodel (not yet implemented)
in2o = 2: a uniform volume mixing ra-
tio of n2ovmr is used for the radiation
computation
in2o = 3: a uniform volume mixing
ratio of n2ovmr is used in the tropo-
sphere with a decay in the layers above
the troposphere for the radiation com-
putation
in2o = 4: a uniform volume mixing
ratio of N2O for a specific scenario run
defined by ighg is used for the radia-
tion computation

3

io3 integer io3 = 0: the O3 concentration is set to
zero for the radiation computation
io3 = 1: transported O3 by any sub-
model (not yet implemented)
io3 = 2: climatological O3 volume
mixing ratios given in spectral space
are used in the radiation computation
as it was done in ECHAM4
io3 = 3: climatological O3 volume
mixing ratios given in gridpoint space
in a NetCDF file are used in the radia-
tion computation
io3 = 4: climatological O3 volume
mixing ratios provided by the IPCC
process in NetCDF files are used for the
radiation calculation

3

io2 integer io2 = 0: the O2 concentration is set to
zero for the radiation computation
io2 = 2: the O2 volume mixing ratio is
set to o2vmr for the radiation compu-
tation.

2

table continued on next page

22 CHAPTER 2. USER GUIDE

Table 2.11: radctl — continued

isolrad integer controls choice of solar constant.
isolrad = 0: standard rrtm solar con-
stant
isolrad = 1: time dependent spec-
trally resolved solar constant read from
file
isolrad = 2: pre–industrial solar con-
stant
isolrad = 3: solar constant for amip
runs (fixed in time)

3

l lrtm logical switches on/off new LRTM radiation
scheme

.true

l newoptics logical switches on/off new optical parameters
of clouds

.true.

l srtm logical switches on/off new RRTM solar radi-
ation scheme

.true

ldiur logical switches on/off diurnal cycle .true.

lradforcing(2) logical switches on/off the diagnostic of
instantaneous aerosol forcing in the
solar spectral range (lradforcing(1))
and the thermal spectral range
(lradforcing(2)).

.false.,.false.

n2ovmr double prec N2O volume mixing ratio (mole frac-
tion) for in2o=2,3

309.5× 10−9

nmonth integer nmonth = 0: execute full annual cycles
nmonth = 1, 2, . . . , 12: perpetual rep-
etition of the month corresponding to
the number to which nmonth is set. The
perpetual month works with a 360–
day orbit only (l orbvsop87=.false.

must be set in runctl).

0

o2vmr double prec O2 volume mixing ratio 0.20946

trigrad special time interval for radiation calculation 2,’hours’,’first’,0

yr perp integer year in the Julian calendar for per-
petual year simulations. Works with
l orbvsop87=.true. only.

-99999

2.2.1.14 Namelist runctl

This namelist contains variables which control the start and end of a simulation and general
properties of the output. For some namelist variables, special documentation exists and can
be provided by S. Rast (sebastian.rast@zmaw.de): debug stream (cr2009 03 31) and tendency
diagnostic (cr2011 01 18).

2.2. INPUT NAMELISTS 23

Table 2.12: Namelist runctl

Variable type Explanation default
delta time integer time step length in seconds default depends

on model resolu-
tion, e.g.: T63L47:
600 s, T63L95:
450 s, T127L95:
240 s

dt resume integer reset restart date to a user defined
value. Is of the form yy,mo,dy,hr,mi,se
(year, month, day, hour, minute, sec-
ond)

0,0,0,0,0,0

dt start(1:6) integer vector of 6 integer numbers defining
the start date of the experiment of the
form yy,mo,dy,hr,mi,se (year, month,
day, hour, minute, second)

0,0,0,0,0,0

dt stop integer stop date of experiment. Is of the
form yy,mo,dy,hr,mi,se (year, month,
day, hour, minute, second)

0,0,0,0,0,0

gethd special time interval for getting data from hy-
drological discharge model

1,’days’,’off’,0

getocean special time interval for sending atmospheric
data to an ocean program coupled to
ECHAM5

1,’days’,’off’,0

iadvec integer selection of the advection scheme:
iadvec = 0: no advection of trace
species and water vapour
iadvec = 1: semi Lagrangian trans-
port algorithm
iadvec = 2: spitfire advection scheme
iadvec = 3: flux form semi Lagrangian
transport (Lin and Rood)

3 – flux form semi
Lagrangian trans-
port

l orbvsop87 logical l orbvsop87 = .true.: use orbit
functions from vsop87 (real orbit);
l orbvsop87 = .false.: “climatologi-
cal” pcmdi (AMIP) orbit

.true.

l volc logical switches on/off volcanic aerosols. This
variable is obsolete and has to be re-
moved. Use iaero of the radctl

namelist instead.

.false.

lamip logical switches on/off the use of a timeseries
of sea surface temperatures (AMIP
style simulation)

.false.

lcollective writelogical switch on/off parallel writing of restart
files

.false.

table continued on next page

24 CHAPTER 2. USER GUIDE

Table 2.12: runctl — continued

lcouple logical switches on/off coupling with ocean .false.

lcouple co2 logical switches on/off the interactive CO2

budget calculation in a coupled atmo-
sphere/ocean run

.false.

ldailysst logical switches on/off daily varying sea sur-
face temperature and sea ice

.false.

ldebug logical switches on/off mass fixer diagnostics .false.

ldebugev logical switches on/off the output of debugging
information about events

.false.

ldebughd logical switches on/off the output of debugging
information about the hydrological dis-
charge model

.false.

ldebugio logical switches on/off the output of debugging
information about input and output

.false.

ldebugmem logical switches on/off the output of debugging
information about memory use

.false.

ldebugs logical switches on/off the debug stream .false.

ldiagamip logical switches on/off AMIP diagnostics .false.

lhd logical switches on/off the coupling to the hy-
drologic discharge model (HD model)

.false.

lhd highres logical switches on/off high resolution (0.5◦)
output of hydrological discharge model

.false.

lhd que logical switches on/off additional output from
hydrological discharge model

.false.

lindependent readlogical switches on/off reading initial or restart
data by each MPI rank separately

.false.

lipcc logical switches on/off the use of IPCC param-
eters

.false.

lmeltpond logical switches on/off the presence of melt-
ponds in albedo calculation

.true.

lmidatm logical switches on/off middle atmosphere
model version

.true.

lmlo locical switches on/off mixed layer ocean .false.

lnmi logical switches on/off normal mode initialisa-
tion

.false.

lnudge logical switches on/off the “nudging” i.e. con-
straining the dynamic variables diver-
gence, vorticity, temperature, and sur-
face pressure towards given external
values by relaxation

.false.

lnwp logical switches on/off Numerical Weather
Prediction mode

.false.

lport logical switches on/off the introduction of a
random perturbation for portability
tests

.false.

table continued on next page

2.2. INPUT NAMELISTS 25

Table 2.12: runctl — continued

lprint m0 logical switches on/off measuring and printing
the cpu time for every time step

.false.

lresume logical lresume = .true.: perform a rerun
lresume = .false.: perform an initial
run

.false.

lroot io logical disables (.true.) or enables (.false.)
classical root I/O.

.true.

ltctest logical switches on/off a test of time control
without performing a true simulation

.false.

ltdiag logical switches on/off an additional detailed
tendency diagnostic

.false.

ltimer logical switches on/off the output of some
performance related information (run
time)

.false.

ly360 logical switches on/off the use of a 360–day
year

.false.

ndiahdf integer logical unit number for file containing
horizontal diffusion diagnostics.

10

nhd diag integer number of region for which hydrological
discharge model diagnostics is required

0

no cycles integer stop after no cycles of reruns 1

no days integer stop after no days days after dt start -1

no steps integer stop after the integration of no steps

of time steps after dt start

-1

nproma integer vector length of calculations in grid
point space

number of longi-
tudes

nsub integer number of subjobs 0

out datapath(256) character name of path to which output files are
written. Must have a “/” at the end

’ ’

out expname(19) character prefix of output file names ’ ’

out filetype integer format of meteorological output files
out filetype = 1: GRIB format
out filetype = 2: NetCDF format
out filetype = 6: NetCDF4 format

1

out ztype integer compression type of outputfiles
out ztype = 0: no compression
out ztype = 1: szip only for GRIB
output
out ztype = 2: zip only for NetCDF4
output

0

putdata special time interval at which output data are
written to output files

12,’hours’,’first’,0

puthd special time interval for putting data to the hy-
drological discharge model

1,’days’,’off’,0

table continued on next page

26 CHAPTER 2. USER GUIDE

Table 2.12: runctl — continued

putocean special time interval for receiving ocean data in
the atmospheric part if ECHAM6 is cou-
pled to an ocean model

1,’days’,’off’,0

putrerun special time interval for writing rerun files 1,’months’,’last’,0

rerun filetype integer format of rerun files
rerun filetype = 2: NetCDF format
rerun filetype = 4: NetCDF2 for-
mat

2

subflag(1:9) logical vector of nine switches for switching
on/off the binding of subjob output to
output streams

.false.

trac filetype integer format of tracer output files
trac filetype = 1: GRIB format
trac filetype = 2: NetCDF format

1

trigfiles special time interval at which new output files
are opened

1,’months’,’first’,0

trigjob special time interval for the automatic submis-
sion of subjobs

1,’months’,’off’,0

2.2.1.15 Namelist submdiagctl

This namelist controls diagnostic output of generic submodel variables and streams. In the
“pure” ECHAM6 version, these switches do not have any functionality.

Table 2.13: Namelist submdiagctl

Variable type Explanation default
drydep gastrac(24,1:200) character names of gas phase tracers

to be included in dry depo-
sition stream. Special name
’default’ is possible

drydep gastrac(1)

= ’default’,
drydep gastrac

(2:200) = ’’

drydep keytype integer aggregation level of output
of dry deposition stream
drydep keytype=1: output
by tracer
drydep keytype=2: output
by (chemical) species
drydep keytype=3: output
by (aerosol) mode
drydep keytype=4: user
defined

2

drydep lpost logical switches on/off output of
wet deposition stream

.true.

drydep tinterval special output frequency of wet de-
position stream

putdata

(see runctl

namelist)
table continued on next page

2.2. INPUT NAMELISTS 27

Table 2.13: submdiagctl — continued

drydepnam(32,1:50) character list of tracer names of dry
deposition output stream.
There are the special names
’all’ = ’detail’, and
’default’

drydepnam(1)

= ’default’,
drydepnam(2:50)

= ’’

sedi keytype integer aggregation level of output
of sedimentation stream
sedi keytype=1: output by
tracer
sedi keytype=2: output by
(chemical) species
sedi keytype=3: output by
(aerosol) mode
sedi keytype=4: user de-
fined

2

emi gastrac(24,1:200) character names of gas phase trac-
ers to be included in emis-
sion stream to diagnose
emissions. Special name
’default’ is possible

emi gastrac(1)

= ’default’,
emi gastrac

(2:200) = ’’

emi keytype integer aggregation level of out-
put of emission diagnostic
stream
emi keytype=1: output by
tracer
emi keytype=2: output by
(chemical) species
emi keytype=3: output by
(aerosol) mode
emi keytype=4: user de-
fined

2

emi lpost logical switches on/off output of
emission diagnostic stream

.true.

emi lpost detail logical switches on/off detailed
(emissions by sector) out-
put of emission diagnostic
stream

.true.

emi tinterval special output frequency of emis-
sion diagnostic stream

putdata

(see runctl

namelist)
eminam(32,1:50) character list of tracer names of

emission diagnostic stream.
There are the special names
’all’ = ’detail’, and
’default’

eminam(1) =

’default’,
eminam(2:50)

= ’’

table continued on next page

28 CHAPTER 2. USER GUIDE

Table 2.13: submdiagctl — continued

sedi keytype integer aggregation level of output
of sedimentation stream
sedi keytype=1: output by
tracer
sedi keytype=2: output by
(chemical) species
sedi keytype=3: output by
(aerosol) mode
sedi keytype=4: user de-
fined

2

sedi lpost logical switches on/off output of
sedimentation stream

.true.

sedi tinterval special output frequency of sedi-
mentation stream

putdata

(see runctl

namelist)
sedinam(32,1:50) character list of tracer names of

sedimentation diagnostic
stream. There are the spe-
cial names ′all′ = ′detail′,
and ’default’

sedinam(1)

= ’default’,
sedinam(2:50)

= ’’

vphysc lpost logical switches on/off output of
vphysc stream

.true.

vphyscnam(32,1:50) character list of variable names of
vphysc stream. There are
the special names ’all’

and ’default’

vphyscnam(1)

= ’default’,
vphyscnam(2:50)

= ’’

vphysc tinterval special output frequency of vphysc
stream

putdata

(see runctl

namelist)
wetdep gastrac(24,1:200) character names of gas phase tracers

to be included in wet depo-
sition stream. Special name
’default’ is possible

wetdep gastrac(1)

= ’default’,
wetdep gastrac

(2:200) = ’’

wetdep keytype integer aggregation level of output
of wet deposition stream
wetdep keytype=1: output
by tracer
wetdep keytype=2: output
by (chemical) species
wetdep keytype=3: output
by (aerosol) mode
wetdep keytype=4: user
defined

2

wetdep lpost logical switches on/off output of
wet deposition stream

.true.

table continued on next page

2.2. INPUT NAMELISTS 29

Table 2.13: submdiagctl — continued

wetdep tinterval special output frequency of wet de-
position stream

putdata

(see runctl

namelist)
wetdepnam(32,1:50) character list of tracer names of wet

deposition output stream.
There are the special names
′all′ = ′detail′, and
’default’

wetdepnam(1)

= ’default’,
wetdepnam(2:50)

= ’’

2.2.1.16 Namelist submodelctl

This namelist contains general submodel switches of “proper submodels” including switches
that control the coupling among submodels.

Table 2.14: Namelist submodelctl

Variable type Explanation default
laircraft logical switches on/off aircraft

emissions
.false.

lburden logical switches on/off burden cal-
culation (column integrals)

.false.

lco2 logical switches on/off CO2 sub-
model (interacting with JS-
BACH)

.false.

lchemheat logical switches on/off chemical
heating

.false.

lchemistry logical switches on/off chemistry .false.

ldrydep logical switches on/off dry deposi-
tion

.false.

lham logical switches on/off HAM
aerosol submodel

.false.

lemissions logical switches on/off emissions .false.

lhammonia logical switches on/off HAMMO-
NIA submodel (middle
and upper atmosphere
submodel)

.false.

lhammoz logical switches on/off HAM
aerosol submodel and
MOZART chemistry sub-
model and the coupling
between the two

.false.

lhmzhet logical switches on/off hammoz
heterogeneous chemistry

.false.

lhmzphoto logical switches on/off hammoz
photolysis

.false.

table continued on next page

30 CHAPTER 2. USER GUIDE

Table 2.14: submodelctl — continued

lhmzoxi logical switches on/off hammoz ox-
idant fields

.false.

linterchem logical switches on/off coupling of
chemistry with radiation

.false.

linteram logical switches on/off interactive
airmass calculation (HAM-
MONIA)

.false.

lintercp logical switches on/off interactive
cp calculation (HAMMO-
NIA)

.false.

llght logical switches on/off interactive
computation of lightning
emissions

.false.

lmethox logical switches on/off methane ox-
idation in stratosphere

.false.

lmegan logical switches on/off biogenic
vegetation emissions

.false.

lmicrophysics logical switches on/off micros-
physics calculations

.false.

lmoz logical switches on/off MOZART
chemistry submodel

.false.

loisccp logical switches on/off isccp simu-
lator. Currently, the isccp
simulator is implemented
outside the submodel inter-
face

.false.

losat logical switches on/off satellite
simulator. Currently, the
locosp switch for the
cosp satellite simulator is
implemented outside the
submodel interface.

.false.

lsalsa logical switches on/off SALSA
aerosol submodel

.false.

lsedimentation logical switches on/off sedimenta-
tion

.false.

ltransdiag logical switches on/off atmospheric
energy transport diagnostic

.false.

lwetdep logical switches on/off drydeposi-
tion

.false.

lxt logical switches on/off generic test
of tracer submodel

.false.

2.2. INPUT NAMELISTS 31

2.2.1.17 Namelist tdiagctl

This namelist determines the output of the tendency diagnostic. The tendencies of Tab. 2.15
can be diagnosed. The following variables are contained in the diagnostic stream tdiag. The
top row describes the variables, the first column gives the routine names (processes) producing
the tendencies saved under the names in the corresponding rows. The units of the variables
and code numbers are given in parenthesis.

Table 2.15: Variables of the diagnostic stream tdiagctl

variable du/dt dv/dt dT/dt dq/dt dxl/dt dxi/dt
(m/s/day) (m/s/day) (K/day) (1/day) (1/day) (1/day)

routine
(process)

vdiff
dudt vdiff dvdt vdiff dtdt vdiff dqdt vdiff dxldt vdiff dxidt vdiff

(code 11) (code 21) (code 1) (code 31) (code 41) (code 51)

radheat
— — dtdt rheat sw (code 62) — — —

— — dtdt rheat lw (code 72) — — —

gwspectrum
dudt hines dvdt hines dtdt hines

— — —
(code 13) (code 23) (code 3)

ssodrag
dudt sso dvdt sso dtdt sso

— — —
(code 14) (code 24) (code 4)

cucall
dudt cucall dvdt cucall dtdt cucall dqdt cucall

— —
(code 15) (code 25) (code 5) (code 35)

cloud — —
dtdt cloud dqdt cloud dxldt cloud dxidt cloud

(code 6) (code 36) (code 46) (code 56)

atmospheric variables
Box area surface geopotential ln(ps/p) ps T (t) T (t−∆t)

m2 m2/s2 spectral Pa spectral K

Additional documentation can be found in cr2011 01 18 provided by S. Rast (sebas-
tian.rast@zmaw.de).

Table 2.16: Namelist tdiagctl

Variable type Explanation default
puttdiag special Output frequency of tendency stream 6, ’hours’,

’first’, 0

table continued on next page

32 CHAPTER 2. USER GUIDE

Table 2.16: tdiagctl — continued

tdiagnam(32,1:22) character determines the choice of tendencies
that are written to the output stream
tdiag

keyword explanation
’all’ output all ten-

dencies of tdiag

stream
one of

’vdiff’,
’radheat’,
’gwspectrum’,
’ssodrag’,
’cucall’,
’cloud’

output all tenden-
cies associated
with
vdiff,
radheat,
gwspectrum,
ssodrag,
cucall,
cloud

one of

’uwind’,
’vwind’,
’temp’,
’qhum’,
’xl’,
’xi’,

of all processes,
output the ten-
dency
du/dt,
dv/dt,
dT/dt,
dq/dt,
dxl,
dxi

one of the vari-
able names
of the ten-
dencies listed
in table 2.15,
e.g. dudt hines

output this
tendency,
e.g. du/dt due to
gwspectrum

tdiagnam(1) =
′all′,
tdiagnam(2 :
22) = ′end′

2.2.2 Input namelists in file namelist.jsbach

The JSBACH namelist file namelist.jsbach contains several independent Fortran namelists:

albedo ctl: defines parameters that are used in the albedo scheme

bethy ctl: controls the photosynthesis (BETHY) module

cbalance ctl: defines parameters of the carbon module

climbuf ctl: defines parameters for multi–year climate variable calculation

dynveg ctl: controls the dynamic vegetation

2.2. INPUT NAMELISTS 33

jsbach ctl: defines the basic settings of a JSBACH simulation. The namelist includes param-
eters to switch on or off JSBACH modules, and controls IO.

soil ctl: defines parameters used in the soil module

The tables in the following subsections list all namelist parameters of the different JSBACH
namelists. Each parameter is listed in alphabetical order and is briefly described. Besides, the
Fortran type and the default values are given.

2.2.3 Namelist albedo ctl

The namelist for the albedo scheme is read in routine config albedo of mod-
ule mo land surface.f90. It is used only if the albedo scheme is switched on,
i.e. use albedo=.TRUE. in namelist jsbach ctl (compare table 2.22).

Table 2.17: Namelist albedo ctl

Parameter Type Description Default
use albedocanopy logical .TRUE.: read maps of canopy albedo

(albedo veg nir and albedo veg vis

from jsbach.nc); .FALSE.: use PFT
specific albedo values from lctlib.def

.FALSE.

use snowage logical if .TRUE., account for snow aging in
albedo calculation

.TRUE.

2.2.4 Namelist bethy ctl

The namelist bethy ctl controls the BETHY module for photosynthesis. It is used only if
use bethy=.TRUE. in namelist jsbach ctl (compare table 2.22). The namelist is read in
routine config bethy of mo bethy.f90.

Table 2.18: Namelist bethy ctl

Parameter Type Description Default
ncanopy integer number of canopy layers 3

2.2.5 Namelist cbalance ctl

The cbalance module handling the carbon pools is controlled by namelist cbalance ctl. The
namelist is read in routine init cbalance bethy in mo cbal bethy.f90.

Table 2.19: Namelist cbalance ctl

Parameter Type Description Default

table continued on next page

34 CHAPTER 2. USER GUIDE

Table 2.19: cbalance ctl — continued

cpools file name character name of the file containing initial data
for the carbon pools. Only used if
read cpools=.TRUE.

’Cpools.nc’

ndepo file name character name of the file containing nitro-
gen deposition data. Only used if
with nitrogen=.TRUE. in jsbach ctl

and read cpools=.TRUE.

’Ndepo.nc’

npools file name character name of the file containing initial data
for the nitrogen pools. Only used if
with nitrogen=.TRUE. in jsbach ctl

and read npools=.TRUE.

’Npools.nc’

read cpools logical initialize carbon pools with data from
an external file.

.FALSE.

read ndepo logical read nitrogen deposition data from
an external file. Only used if
with nitrogen=.TRUE. in jsbach ctl

.FALSE.

read npools logical initialize nitrogen pools with data
from an external file. Only used if
with nitrogen=.TRUE. in jsbach ctl

.FALSE.

2.2.6 Namelist climbuf ctl

The climate buffer provides climate variables as multi-annual running means, minimums or
maximums. It is controlled by namelist climbuf ctl. The namelist is read in routine
config climbuf (mo climbuf.f90).

Table 2.20: Namelist climbuf ctl

Parameter Type Description Default
init running means logical initialize the calculation of long term

climate variables. (Should be .TRUE.

at the beginning of the second year of
an initialized experiment.)

.FALSE.

read climbuf logical read climate buffer data from an exter-
nal file.

.FALSE.

climbuf file name character name of the climate buffer file. Only
used if read climbuf=.TRUE.

’climbuf.nc’

2.2.7 Namelist dynveg ctl

The dynamic vegetation is controlled by dynveg ctl. The namelist is read in config dynveg

(mo dynveg.f90). It is used only, if the dynamic vegetation is switched on by setting
USE DYNVEG= .TRUE. in namelist jsbach ctl (compare table 2.22).

2.2. INPUT NAMELISTS 35

Table 2.21: Namelist dynveg ctl

Parameter Type Description Default
accelerate dynveg real factor to accelerate vegetation dynam-

ics. Default: no acceleration
1.

dynveg all logical activate competition between woody
types and grasses (not recommended)

.FALSE.

dynveg feedback logical switch on/off the feedback of the
dynamic vegetation on the JSBACH
physics. (Cover fractions are kept con-
stant, while fire and wind break still in-
fluence the carbon cycle.)

.TRUE.

fpc file name character name of an external vegetation file.
Only used if read fpc=.TRUE.

’fpc.nc’

read fpc logical read initial cover fractions from an ex-
ternal file; the file name is defined with
parameter fpc file name.

.FALSE.

2.2.8 Namelist jsbach ctl

The namelist jsbach ctl includes the basic parameters for a JSBACH simulation. It is needed
to switch on or off the different physical modules as e.g. the dynamic vegetation or the albedo
scheme. Besides, it controls file names and other IO-options. The namelist is read in routine
jsbach config of module mo jsbach.f90.

Table 2.22: Namelist jsbach ctl

Parameter Type Description Default
debug logical additional output for debugging .FALSE.

debug Cconservation logical additional debugging output to solve
problems with carbon conservation

.FALSE.

file type character output format: GRIB, NETCDF, NETCDF2
or NETCDF4

’GRIB’

grid file character input file containing grid information ’jsbach.nc’

lcc forcing type character Scheme for (anthropogenic) landcover
changes. NONE: no landcover change;
MAPS: read maps of landcover fractions;
TRANSITIONS: read maps with landuse
transitions

’NONE’

lctlib file character name of the land cover library file ’lctlib.def’

lpost echam logical if .TRUE., write jsbach output vari-
ables, even if they are part of the echam
output

.FALSE.

table continued on next page

36 CHAPTER 2. USER GUIDE

Table 2.22: jsbach ctl — continued

c5compat logical if .TRUE., preserve compatibility in JS-
BACH carbon handling with CMIP5
simulations (root exudates to litter
pools)

.TRUE.

missing value real missing value for the output (ocean val-
ues)

NF FILL REAL

ntiles integer number of tiles defined on each grid cell -1

read cover fract logical read cover fractions from the JSBACH
initial file rather than from restart file

.FALSE.

soil file character file containing initial data of soil prop-
erties

’jsbach.nc’

standalone logical Type of model run; .TRUE.: stand-
alone JSBACH run; .FALSE.: JS-
BACH driven by an atmosphere model

.TRUE.

surf file character file containing initial data of the land
surface

’jsbach.nc’

test Cconservation logical switches on/off carbon conservation
test

.FALSE.

test stream logical additional stream for model testing .FALSE.

use albedo logical switches on/off a dynamic albedo
scheme

.FALSE.

use bethy logical switches on/off the BETHY model
(photosynthesis, respiration)

.FALSE.

use dynveg logical switches on/off the dynamic vegetation
module

.FALSE.

use phenology logical switches on/off the phenology module
to calculate the LAI

.FALSE.

veg file character file containing initial data for the vege-
tation

’jsbach.nc’

with nitrogen logical calculate the nitrogen cycle (not fully
implemented in the current version).

.FALSE.

2.2.9 Namelist soil ctl

The configurable parameters to control the soil physics are defined in namelist soil ctl. The
namelist is read in config soil in module mo soil.f90.

Table 2.23: Namelist soil ctl

Parameter Type Description Default
crit snow depth real Critical snow depth for correction of

surface temperature for melting [m]
5.85036× 10−03

table continued on next page

2.2. INPUT NAMELISTS 37

Table 2.23: soil ctl — continued

moist crit fract real critical value of soil moisture above
which transpiration is not affected by
the soil moisture stress; expressed as
fraction of the maximum soil moisture
content

0.75

moist max limit real upper limit for maximum soil mois-
ture content: If positive, max moisture

from initial file is cut off at this value.

-1.0

moist wilt fract real soil moisture content at permanent
wilting point, expressed as fraction of
maximum soil moisture content

0.35

skin res max real maximum water content of the skin
reservoir of bare soil [m]

2.× 10−04

2.2.10 Input namelists in other files

2.2.10.1 Namelist mvctl

For each stream in the mvstreamctl namelist, a mvctl namelist has to be created. The mvctl

namelist has to be written to a file {namelist}.nml where {namelist} is the name of the re-
spective stream. For tracers, the namelist has to be written to tracer.nml. See section 2.2.1.8
also. Additional documentation can be found in cr2010 07 28 provided by S. Rast (sebas-
tian.rast@zmaw.de).

Table 2.24: Namelist mvctl

Variable type Explanation default
putmean special frequency at which the respec-

tive mean value stream shall be
written

1,’months’,’first’,0

meannam(32,1:500) character list of variables (e.g. mete-
orological variables, chemical
species) for which mean values
are calculated

empty strings

table continued on next page

38 CHAPTER 2. USER GUIDE

Table 2.24: mvctl — continued

stddev(1:500) integer This variable controls the cal-
culation of the mean of the
square of each variable in the
list meannam.
stddev(1) = −1: calculate the
mean square of all variables
present in meannam

stddev(i) = 0: Do not
calculate the mean of the
square of variable i except if
stddev(1) = −1
stddev(i) = 1: Calculate the
mean of the square of variable
i in list meannam.

0,0,...,0

2.3 Input data

This section provides a brief description of the input files but does not describe the input data
itself. Such a description can be found in the scientific part of the documentation or (at least
in parts) on the web: :
http://www.mpimet.mpg.de/en/science/models/echam/echam5/

inputoutput/echam5-input-files.html

All input files are stored in the directory
/pool/data/ECHAM6/

and its subdirectories for the atmospheric part and in the directory
/pool/data/JSBACH

for the land–surface model. In /pool/data/ECHAM6/, you find the resolution independent data.
Furthermore, it contains directories {RES} where {RES} has to be replaced by one of the spectral
model resolutions T31, T63, T127, and T255, respectively providing resolution dependent input
files. Similarly, the resolution dependent land–surface model data are stored in subdirectories
T31, T63, etc. of the /pool/data/JSBACH directory. In the following, the vertical resolution will
be denoted by {LEV} which represents the number of vertical σ–levels preceeded by a capital L.
The most common model resolutions are T63L47 and T127L95. Currently, ECHAM6 is tuned for
the resolutions T63L47, T63L95, T127L95 only. Other resolutions may require a new tuning
of the model in order to adjust the parameters of certain equations to the particular model
resolution. Some of the input data contain information about the land–sea distribution and
therefore are provided for various ocean resolutions even if the model is not coupled to an
interactive ocean. The ocean resolution will be symbolized by {OCR}. Currently, the GR15,
GR30, TP04, TP10, TP6M ocean resolutions are considered, but not all possible combinations
with spectral ECHAM6 resolutions are available.
There are three kinds of input data: initial conditions, boundary conditions, and data of model
parameters. The boundary conditions can be either “transient boundary conditions” depending
on the actual year or “climatological boundary conditions” which do not depend on the year but
may contain a seasonal cycle. The files containing the initial conditions are listed in Tab. 2.25.

2.3. INPUT DATA 39

Table 2.25: Initial conditions for ECHAM6

Resolution dependent ECHAM6 initial data in /pool/data/ECHAM6//{RES}
Link target Link name Explanation
{RES}{LEV} jan spec.nc unit.23 Variables describing the vertical

σ–coordinates, spectral fields like
divergence, vorticity etc. serving
to start the model from some ini-
tial values. These values are very
rough estimates only and do not
describe any dynamic state of the
atmosphere that occurs with high
probability!

{RES}{OCR} jan surf.nc unit.24 Surface fields like land sea mask,
glacier mask etc. for a start of the
model from initial values.

Resolution independent ECHAM6 initial data in /pool/data/ECHAM6/

hdstart.nc hdstart.nc Initial data for hydrological dis-
charge model.

The climatological boundary condition files are listed in Tab. 2.26. Sea surface temperature and
sea ice cover climatologies for ECHAM6 are based on 500 year–climatologies of our coupled control
simulations and are available for the T63 resolutions only. Furthermore, some of the data are
formally read by ECHAM6 but not used: The leaf area index, vegetation ratio, and albedo e.g. are
calculated by the surface model JSBACH and it is impossible to use climatological values read
from files. Actually, JSBACH reads these quantities again, but discards them also. Even
if dynamic vegetation is switched off: This just means that the geographical distribution of
vegetation types is fixed in time, but the leaf area index changes with season and soil moisture
and consequently also the albedo varies with time according to the vegetation model used in
JSBACH.
The input data for the hydrological discharge model (see Tab. 2.25 and Tab. 2.26) are not
entirely resolution independent, but the current data can be used for a wide range of resolutions
(probably not for T255?).

Table 2.26: Climatological boundary conditions for ECHAM6. Some of the climatological bound-
ary conditions have to be linked to year dependent files. The year is symbolized by yyyy.

Resolution dependent data in /pool/data/ECHAM6/{RES}
Link target Link name Explanation
{RES} O3clim2.nc unit.21 Zonal mean ozone climatology for

radiation calculation. These files
should not be used in ECHAM6, and
are obsolete.

table continued on next page

40 CHAPTER 2. USER GUIDE

Table 2.26: Climatological boundary conditions for ECHAM6 continued

{RES} ozone CMIP5 y1-y2.nc ozonyyyy 3–d ozone climatology being a
mean value over the years y1 to
y2. Currently, y1-y2=1850-1860
and 1979-1988 is available. These
files have to be linked to filenames
ozonyyyy where yyyy is the actu-
ally simulated year.

{RES}{OCR} VLTCLIM.nc unit.90 Climatological leaf area index
(monthly data).

{RES}{OCR} VGRATCLIM.nc unit.91 Climatological vegetation ratio
(monthly data).

{RES} TSLCLIM2.nc unit.92 Climatological land surface tem-
perature (monthly data).

T{RES}{OCR} piControl-
LR sst 1880-2379.nc

unit.20 Climatological sea surface tem-
peratures (monthly data, only in
T63GR15 available).

{RES}{OCR} piControl-
LR sic 1880-2379.nc

unit.96 Climatological sea ice data
(monthly data, only in T63GR15
available).

Tropospheric aerosols
aero2/{RES} aeropt
kinne sw b14 coa.nc

aero coarse yyyy.nc Optical properties of coarse mode
aerosols in the solar spectral
range. Since these are mostly
of natural origin, climatological
boundary conditions are sufficient
for historic times.

aero2/{RES} aeropt
kinne lw b16 coa.nc

aero farir yyyy.nc Aerosol optical properties in the
thermal spectral range. Only
coarse mode aerosols play a role.
Since these are mostly of natu-
ral origin, climatological bound-
ary conditions are sufficient for
historic times.

Land surface model JSBACH (/pool/data/JSBACH)
jsbach/

jsbach {RES}{OCR} {t} yyyy.nc
jsbach.nc Boundary conditions for land sur-

face model JSBACH. It also de-
pends on the ocean resolution be-
cause the land–sea mask does.
The structure of JSBACH may
vary with the number of tiles,
encoded in {t}=4tiles, 8tiles,
11tiles, or 12tiles. Not all
combinations of resolutions are
available.

Resolution independent data in /pool/data/ECHAM6//{RES}
table continued on next page

2.3. INPUT DATA 41

Table 2.26: Climatological boundary conditions for ECHAM6 continued

hcpara.nc hdpara.nc Data for hydrological discharge
model.

Furthermore, various transient boundary conditions are available which can either replace their
climatological counterparts or be used as supplemental conditions. Examples for transient
boundary conditions are observed sea surface temperatures and sea ice data, transient green-
house gas concentrations or data accounting for interannual variability in solar radiation, ozone
concentration or aerosol optical properties. The historical sea surface temperature (SST) and
sea ice cover (SIC) data are taken from the Program for Climate Model Diagnosis and Inter-
comparison (PCMDI, status: November 2009). A list of possible input data can be found in
Tab. 2.27.

Table 2.27: ECHAM6 transient boundary conditions. Specific years are symbolized by yyyy.

Resolution dependent data in /pool/data/ECHAM6//{RES}
Link target Link name Explanation
amip2/

{RES} amip2sst yyyy.nc

sstyyyy historical sea surface tempera-
tures (monthly data).

amip2/

{RES} amip2sic yyyy.nc

iceyyyy historical sea ice data (monthly
data).

Tropospheric aerosols
aero2/{RES} aeropt
kinne sw b14 fin yyyy.nc

aero fine yyyy.nc Optical properties of fine mode
aerosols in the solar spectrum.
These aerosols are of anthro-
pogenic origin mainly. Therefore,
they depend on the year. These
are the historical data.

aero2/{RES} aeropt
kinne sw b14 fin {sc} yyyy.nc

aero fine yyyy.nc Optical properties of fine mode
aerosols in the solar spectrum.
These aerosols are of anthro-
pogenic origin mainly. Therefore,
they depend on the year. They
are provided for different scenar-
ios for the future ({sc}= rcp26,
rcp45, rcp85).

Volcanic (stratrospheric) aerosols, Stenchikov
volcano aerosols/strat

aerosol ir T{RES} yyyy.nc
strat aerosol sw yyyy.nc Aerosol optical properties of

stratospheric aerosols of volcanic
origin in the solar spectral range.

volcano aerosols/strat

aerosol ir T{RES} yyyy.nc
strat aerosol ir yyyy.nc Aerosol optical properties of

stratospheric aerosols of volcanic
origin in the thermal spectral
range.

Volcanic (stratrospheric) aerosols, provided by HAM

table continued on next page

42 CHAPTER 2. USER GUIDE

Table 2.27: Transient boundary conditions continued

N.N. aoddz ham yyyy.nc Aerosol optical properties as pro-
vided by the HAM model. These
data have to be used together
with the b30w120 parameter file
of Tab. 2.28. The aerosol type
described by the HAM model has
to be compatible with that of the
parameter file.

Transient 3d–ozone data in /pool/data/ECHAM6/{RES}/ozone2
{RES} ozone CMIP5

yyyy.nc

ozonyyyy Historic 3d–distribution of ozone
in the stratosphere and tropo-
sphere.

{RES} ozone CMIP5

{sc} yyyy.nc
ozonyyyy 3d–distribution of ozone in the

stratosphere and troposphere for
the scenarios rcp26, rcp45, and
rcp85.

Resolution independent data in /pool/data/ECHAM6/

Volcanic (stratrospheric) aerosols, T. Crowley
ici5d-ad800-1999.asc aodreff crow.dat Stratospheric aerosol optical

properties of volcanic aerosols
compiled by T. Crowley. All
years are in one file. The b30w120
parameter file of Tab. 2.28 has to
be used together with these data.

Transient solar irradiance in /pool/data/ECHAM6/solar irradiance

swflux 14band yyyy.nc swflux yyyy.nc Monthly spectral solar irradiance
for year yyyy.

Greenhouse gas scenarios in /pool/data/ECHAM6/

greenhouse {sc}.nc greenhouse gases.nc Transient greenhouse gas concen-
trations (all years in one file)
for the scenarios {sc}= rcp26,
rcp45, rcp85. The rcp45–file
contains the historic data also.

Some of the equations used in ECHAM6 need tables of parameters. E.g. the radiation needs
temperature and pressure (concentration) dependent absorption coefficients, the calculation of
the aerosol optical properties at all wave lengths from the effective aerosol radius and the aerosol
optical depth at a certain wavelength needs conversion factors. The surface model JSBACH
needs further input parameters that are provided in a kind of a standard input file. A list of
the input files containing model parameters is provided in Tab. 2.28.

Table 2.28: Input files for ECHAM6 containing parameters for various physical processes in
/pool/data/ECHAM6/

Link target Link name Explanation

table continued on next page

2.4. OUTPUT FILES AND VARIABLES 43

Table 2.28: Parameters files continued

surrta data rrtadata Tables for RRTM radiation
scheme — solar radiation.

rrtmg lw.nc rrtmg lw.nc Tables for RRTMG radiation
scheme — thermal radiation.

ECHAM6 CldOptProps.nc ECHAM6 CldOptProps.nc Optical properties of clouds.
b30w120 aero volc tables.dat Parametrizations of the aerosol

optical properties in the case of
T. Crowley aerosols and aerosols
provided by HAM. This table has
to be compatible with the aerosol
data.

jsbach/

lctlib nlct21.def rev4154

lctlib.def Parametrization of properties of
vegetation and land model JS-
BACH. (imported from the cos-
mos svn)

2.4 Output files and variables

The number and names of outputfiles depend on the model configuration. Tab. 2.29 lists all
standard output files and gives an overview of the kind of variables being in these files. The
names of the outputfiles are composed of the experiment name EXPNAME as it is given by the
out expname variable of the runctl namelist (see section 2.2.1.14), a date information DATE

corresponding to the simulation date at which the output file was opened and an extension
EXT that describes the output stream or family of output streams written to this file. GRIB
format output files do not have further extensions, netcdf format output files have the additional
extension .nc. The filename is therefore composed as EXPNAME DATE EXT[.nc].
All the variables that are written to an output file are members of so–called streams, a special
data structure that allows for standardized output. Not all variables of a stream are written to
output files. Detailed information about all streams and variables are written to the standard
error output device when ECHAM6 is started.

Table 2.29: Output files of ECHAM6

Extension EXT Content
cfdiag diagnostic of 3–dimensional radiation and convec-

tive mass flux
co2 diagnostic of CO2 submodel (carbon cycle)
cosp COSP simulator output
echam main echam outputfile comprising several echam

streams containing 2– and 3–d atmospheric grid-
point and spectral variables

forcing radiation fluxes and heating rates
surf variables from the surface model JSBACH
tdiag tendency diagnostic

table continued on next page

44 CHAPTER 2. USER GUIDE

Table 2.29: Output files — continued

tracer mass mixing ratios of (transported) trace gas
species

The number of variables in each output stream also depend on the model configuration. In
the case of GRIB output, information about code numbers and variables can be found in the
respective files EXPNAME DATE EXT.codes. In the case of netcdf output, the explanation of
the variable can be found inside the netcdf files. Some of the variables are mean values over
the output interval, some are in spectral space, others in grid point space. We give tables of
outputvariables of the most important output files only.

2.4.1 Output file echam

The echam output file combines the variables of several output streams (g3b, gl, and sp) and
contains the main prognostic and diagonstic ECHAM6 output variables describing the dynamic
state of the atmosphere.

Table 2.30: Output file echam. The type of the output fields can be g (instantaneous grid
point variable), g (mean value over the output interval of grid point variable), s (spectral space
variable). The dimension is either 2d (variable depends on longitudes and latitudes only), 3d
(variable depends on longitudes, latitudes, and levels).

Name Code Type Unit Dimension Stream Explanation
abso4 235 g kg/m2 2d g3b anthropogenic sulfur bur-

den
aclcac 223 g — 3d g3b cloud cover
aclcov 164 g — 2d g3b total cloud cover
ahfcon 208 g W/m2 2d g3b conductive heat flux

through ice
ahfice 125 g W/m2 2d g3b conductive heat flux
ahfl 147 g W/m2 2d g3b latent heat flux
ahfliac 110 g W/m2 2d g3b latent heat flux over ice
ahfllac 112 g W/m2 2d g3b latent heat flux over land
ahflwac 111 g W/m2 2d g3b latent heat flux over water
ahfres 209 g W/m2 2d g3b melting of ice
ahfs 146 g W/m2 2d g3b sensible heat flux
ahfsiac 119 g W/m2 2d g3b sensible heat flux over ice
ahfslac 121 g W/m2 2d g3b sensible heat flux over land
ahfswac 120 g W/m2 2d g3b sensible heat flux over water
albedo 175 g — 2d g3b surface albedo
albedo nir 101 g — 2d g3b surface albedo for near in-

frared radiation range
albedo nir dif 82 g — 2d g3b surface albedo for near in-

frared radiation range, dif-
fuse

table continued on next page

2.4. OUTPUT FILES AND VARIABLES 45

Table 2.30: Output file echam — continued

albedo nir dir 80 g — 2d g3b surface albedo for near in-
frared radiation range, di-
rect

albedo vis 100 g — 2d g3b surface albedo for visible ra-
diation range

albedo vis dif 81 g — 2d g3b surface albedo for visible ra-
diation range, diffuse

albedo vis dir 79 g — 2d g3b surface albedo for visible ra-
diation range, direct

alsobs 72 g — 2d g3b albedo of bare ice and snow
without melt ponds

alsoi 122 g — 2d g3b albedo of ice
alsol 124 g — 2d g3b albedo of land
alsom 71 g — 2d g3b albedo of melt ponds
alsow 123 g — 2d g3b albedo of water
ameltdepth 77 g m 2d g3b total melt pond depth
ameltfrac 78 g — 2d g3b fractional area of melt

ponds on sea ice
amlcorac 89 g W/m2 2d g3b mixed layer flux correction
ao3 236 g — 3d g3b mass mixing ratio of IPCC

ozone
apmeb 137 g kg/(m2s) 2d g3b vertical integral tendency of

water
apmegl 221 g kg/(m2s) 2d g3b P-E over land ice
aprc 143 g kg/(m2s) 2d g3b convective precipitation
aprl 142 g kg/(m2s) 2d g3b large scale precipitation
aprs 144 g kg/(m2s) 2d g3b snow fall
aps 134 g Pa 2d g3b surface pressure
az0i 116 g m 2d g3b roughness length over ice
az0l 118 g m 2d g3b roughness length over land
az0w 117 g m 2d g3b roughness length over water
barefrac 70 g — 2d g3b bare ice fraction
dew2 168 g K 2d g3b dew point temperature at

2m above surface
drain 161 g kg/(m2s) 2d g3b drainage
evap 182 g kg/(m2s) 2d g3b evaporation
evapiac 113 g kg/(m2s) 2d g3b evaporation over ice
evaplac 115 g kg/(m2s) 2d g3b evaporation over land
evapwac 114 g kg/(m2s) 2d g3b evaporation over water
fage 68 g — 2d g3b aging factor of snow on ice
friac 97 g — 2d g3b ice cover fraction of grid box
geosp 129 g m2/s2 2d g3b surface geopotential (orog-

raphy)
glac 232 g — 2d g3b fraction of land covered by

glaciers
table continued on next page

46 CHAPTER 2. USER GUIDE

Table 2.30: Output file echam — continued

gld 213 g m 2d g3b glacier depth
lsp 152 s — 2d sp nat. logarithm of surface

pressure
q 133 g — 3d gl specific humidity
qres 126 g W/m2 2d g3b residual heat flux for melt-

ing sea ice
qvi 230 g kg/m2 2d g3b vertically integrated water

vapour
relhum 157 g — 3d g3b relative humidity
runoff 160 g kg/(m2s) 2d g3b surface runoff and drainage
sd 155 s 1/s 3d sp divergence
seaice 210 g — 2d g3b ice cover (fraction of 1-

SLM)
siced 211 g m 2d g3b ice depth
sicepdi 74 g m 2d g3b ice thickness on melt pond
sicepres 76 g W/m2 2d g3b residual heat flux
sicepdw 73 g m 2d g3b melt pond depth on sea ice
slm 172 g — 2d g3b land sea mask (1=land,

0=sea/lake)
sn 141 g m 2d g3b snow depth
snacl 222 g kg/(m2s) 2d g3b snow accumulation over

land
snc 233 g m 2d g3b snow depth at the canopy
sni 214 g m 2d g3b water equivalent of snow on

ice
snifrac 69 g — 2d g3b fraction of ice covered with

snow
snmel 218 g kg/(m2s) 2d g3b snow melt
sofliac 94 g W/m2 2d g3b solar radiation energy flux

over ice
sofllac 96 g W/m2 2d g3b solar radiation energy flux

over land
soflwac 95 g W/m2 2d g3b solar radiation energy flux

over water
srad0d 184 g W/m2 2d g3b incoming solar radiation en-

ergy flux at top of atmo-
sphere

srad0u 203 g W/m2 2d g3b upward solar radiation en-
ergy flux at top of atmo-
sphere

srad0 178 g W/m2 2d g3b net solar radiation energy
flux at top of atmosphere

sradl 86 g W/m2 2d g3b solar radiation at 200 hPa
srads 176 g W/m2 2d g3b net solar radiation energy

flux at surface
table continued on next page

2.4. OUTPUT FILES AND VARIABLES 47

Table 2.30: Output file echam — continued

sradsu 204 g W/m2 2d g3b upward solar radiation en-
ergy flux at surface

sraf0 187 g W/m2 2d g3b net solar radiation energy
flux at top of atmosphere for
clear sky conditions

srafl 88 g W/m2 2d g3b solar radiation energy flux
at 200 hPa for clear sky con-
ditions

srafs 185 g W/m2 2d g3b net solar radiation energy
flux at surface for clear sky
conditions

st 130 s K 3d sp temperature
svo 138 s 1/s 3d sp vorticity
t2max 201 g K 2d g3b maximum temperature at

2m above surface
t2min 202 g K 2d g3b minimum temperature at

2m above surface
temp2 167 g K 2d g3b temperature at 2m above

surface
thvsig 238 g K 2d g3b standard deviation of vir-

tual potential temperature
at half level klevm1

topmax 217 g Pa 2d g3b pressure of height level of
convective cloud tops

tpot 239 g K 3d g3b potential temperature
trad0 179 g W/m2 2d g3b net thermal radiation en-

ergy flux at top of atmo-
sphere

tradl 85 g W/m2 2d g3b thermal radiation energy
flux at 200 hPa

trads 177 g W/m2 2d g3b net thermal radiation en-
ergy flux at surface

tradsu 205 g W/m2 2d g3b upward thermal radiation
energy flux at surface

traf0 188 g W/m2 2d g3b net thermal radiation en-
ergy flux at top of atmo-
sphere for clear sky condi-
tions

trafl 87 g W/m2 2d g3b thermal radiation energy
flux at 200 hPa for clear sky
conditions

trafs 186 g W/m2 2d g3b thermal radiation energy
flux at surface for clear sky
conditions

trfliac 91 g W/m2 2d g3b thermal radiation energy
flux over ice

table continued on next page

48 CHAPTER 2. USER GUIDE

Table 2.30: Output file echam — continued

trfllac 93 g W/m2 2d g3b thermal radiation energy
flux over land

trflwac 92 g W/m2 2d g3b thermal radiation energy
flux over water

tropo 237 g Pa 2d g3b pressure of height level
where tropopause is located
according to WMO defini-
tion

tsi 102 g K 2d g3b surface temperature of ice
tsicepdi 75 g K 2d g3b ice temperature on frozen

melt pond
tslm1 139 g K 2d g3b surface temperature of land
tsurf 169 g K 2d g3b surface temperature
tsw 103 g K 2d g3b surface temperature of wa-

ter
u10 165 g m/s 2d g3b zonal wind velocity at 10m

above surface
ustr 180 g Pa 2d g3b zonal wind stress
ustri 104 g Pa 2d g3b zonal wind stress over ice
ustrl 108 g Pa 2d g3b zonal wind stress over land
ustrw 106 g Pa 2d g3b zonal wind stress over water
v10 166 g m/s 2d g3b meridional wind velocity at

10m above surface
vdis 145 g W/m2 2d g3b boundary layer dissipation
vdisgw 197 g W/m2 2d g3b gravity dissipation
vstr 181 g Pa 2d g3b meridional wind stress
vstri 105 g Pa 2d g3b meridional wind stress over

ice
vstrl 109 g Pa 2d g3b meridional wind stress over

land
vstrw 107 g Pa 2d g3b meridional wind stress over

water
wimax 216 g m/s 2d g3b maximum wind speed at

10m above surface
wind10 171 g m/s 2d g3b wind velocity at 10m above

surface
wl 193 g m 2d g3b skin reservoir content
ws 140 g m 2d g3b soil wetness
wsmx 229 g m 2d g3b field capacity of soil
xi 154 g — 3d gl fractional cloud ice
xivi 150 g kg/m2 2d g3b vertically integrated cloud

ice
xl 153 g — 3d gl fractional cloud water
xlvi 231 g kg/m2 2d g3b vertically integrated cloud

water

2.4. OUTPUT FILES AND VARIABLES 49

2.4.2 Output file forcing

The forcing output file contains the instantaneous radiative aerosol forcing if it was required
by the setting of the corresponding namelist parameters. In the table of the output variables,
we denote the net short wave radiation flux under clear sky conditions by F>sw,clear at the top

of any model layer and by F⊥sw,clear at the bottom of this layer. Similarly, we symbolize the

net short wave radiation flux under all sky condition at the top of any model layer by F>sw,all

and by F⊥sw,all at its bottom. The corresponding quantities for thermal radiation are denoted

by F>lw,clear, F
⊥
lw,clear, F

>
lw,all, and F⊥lw,all, respectively. A superscript 0 is added if these quantities

are meant for an atmosphere free of aerosols: F>,0
sw,clear, F

⊥,0
sw,clear, F

>,0
sw,all, F

⊥,0
sw,all, F

>,0
lw,clear, F

⊥,0
lw,clear,

F>,0
lw,all, F

⊥,0
lw,all. With a certain conversion factor ch, the heating rates with and without aerosols

can be obtained from the radiation fluxes. The subscript sw indicates quantities calculated for
the solar radiation and lw indicates quantities calculated for the thermal radiation range:

T ′sw := (F>sw,all − F⊥sw,all)ch

T ′lw := (F>lw,all − F⊥lw,all)ch

T ′
0
sw := (F>,0

sw,all − F
⊥,0
sw,all)ch

T ′
0
lw := (F>,0

lw,all − F
⊥,0
lw,all)ch

From these quantities, we obtain the heating rate forcing or heating rate anomalies ∆T ′sw and
∆T ′lw for solar and thermal radiation:

∆T ′sw := T ′sw − T ′
0
sw

∆T ′lw := T ′lw − T ′
0
lw

Table 2.31: Output file forcing. The type of the output fields can be g (instantaneous grid
point variable), g (mean value over the output interval of grid point variable), s (spectral space
variable). The dimension is either 2d (variable depends on longitudes and latitudes only), 3d
(variable depends on longitudes, latitudes, and levels).

Name Code Type Unit Dimension Stream Explanation
aps see Tab. 2.30

d aflx lw 25 g W/m2 3d forcing F>lw,all − F
>,0
lw,all

d aflx lwc 26 g W/m2 3d forcing F>lw,clear − F
>,0
lw,clear

d aflx sw 15 g W/m2 3d forcing F>sw,all − F
>,0
sw,all

d aflx swc 16 g W/m2 3d forcing F>sw,clear − F
>,0
sw,clear

FLW CLEAR SUR 23 g W/m2 2d forcing F⊥lw,clear−F
⊥,0
lw,clear at the sur-

face

FLW CLEAR TOP 21 g W/m2 2d forcing F>lw,clear − F
>,0
lw,clear at the top

of the atmosphere

FLW TOTAL SUR 23 g W/m2 2d forcing F⊥lw,all−F
⊥,0
lw,all at the surface

table continued on next page

50 CHAPTER 2. USER GUIDE

Table 2.31: Output file forcing — continued

FLW TOTAL TOP 22 g W/m2 2d forcing F>lw,all − F
>,0
lw,all at the top of

the atmosphere

FSW CLEAR SUR 13 g W/m2 2d forcing F⊥sw,clear−F
⊥,0
sw,clear at the sur-

face

FSW CLEAR TOP 11 g W/m2 2d forcing F>sw,clear−F
>,0
sw,clear at the top

of the atmosphere

FSW TOTAL SUR 14 g W/m2 2d forcing F⊥sw,all−F
⊥,0
sw,all at the surface

FSW TOTAL TOP 12 g W/m2 2d forcing F>sw,all − F
>,0
sw,all at the top of

the atmosphere
gboxarea see Tab. 2.30
geosp see Tab. 2.30
lsp see Tab. 2.30
netht lw 27 g K/d 3d forcing ∆T ′lw
netht sw 17 g K/d 3d forcing ∆T ′sw

2.4.3 Output file tdiag

Wind, temperature, and moisture tendencies due to various processes are collected in this
output file. All the tendencies are instantaneous values the mean values of which may be
calculated during a model run using the mean value stream. The actual content of the tdiag
output file depends on the exact choice of output variables in the tdiagctl namelist (see
Sec. 2.2.1.17).

Table 2.32: Output file tdiag. The type of the output fields can be g (instantaneous grid
point variable), g (mean value over the output interval of grid point variable), s (spectral space
variable). The dimension is either 2d (variable depends on longitudes and latitudes only), 3d
(variable depends on longitudes, latitudes, and levels).

Name Code Type Unit Dimension Stream Explanation
aps see Tab. 2.30
dqdt cloud 36 g K/d 3d tdiag dq/dt due to processes com-

puted by the subroutine
cloud

dqdt cucall 35 g K/d 3d tdiag dq/dt due to processes com-
puted by the subroutine
cucall (convective clouds)

dqdt vdiff 31 g K/d 3d tdiag dq/dt due to processes com-
puted by the subroutine
vdiff (vertical diffusion)

dtdt cloud 6 g K/d 3d tdiag dT/dt due to processes com-
puted by the subroutine
cloud

dtdt cucall 5 g K/d 3d tdiag dT/dt due to processes com-
puted by the subroutine
cucall (convective clouds)

table continued on next page

2.4. OUTPUT FILES AND VARIABLES 51

Table 2.32: Output file tdiag — continued

dtdt hines 3 g K/d 3d tdiag dT/dt due to processes com-
puted by the Hines gravity
wave parametrization

dtdt rheat lw 72 g K/d 3d tdiag dT/dt due to radiative heat-
ing caused by radiation in
the thermal spectral range

dtdt rheat sw 62 g K/d 3d tdiag dT/dt due to radiative heat-
ing caused by radiation in
the solar spectral range

dtdt sso 4 g K/d 3d tdiag dT/dt due to gravity wave
drag

dtdt vdiff 1 g K/d 3d tdiag dT/dt due to processes com-
puted by the subroutine
vdiff (vertical diffusion)

dudt cucall 15 g K/d 3d tdiag du/dt (zonal wind compo-
nent) due to processes com-
puted by the subroutine
cucall (convective clouds)

dudt hines 13 g K/d 3d tdiag du/dt (zonal wind compo-
nent) due to processes com-
puted by the Hines gravity
wave parametrization

dudt sso 14 g K/d 3d tdiag du/dt (zonal wind compo-
nent) due to gravity wave
drag

dudt vdiff 11 g K/d 3d tdiag du/dt (zonal wind compo-
nent) due to processes com-
puted by the subroutine
vdiff (vertical diffusion)

dvdt cucall 25 g K/d 3d tdiag dv/dt (meridional wind
component) due to pro-
cesses computed by the
subroutine cucall (convec-
tive clouds)

dvdt hines 23 g K/d 3d tdiag dv/dt (zonal wind compo-
nent) due to processes com-
puted by the Hines gravity
wave parametrization

dvdt sso 24 g K/d 3d tdiag dv/dt (zonal wind compo-
nent) due to gravity wave
drag

dvdt vdiff 21 g K/d 3d tdiag du/dt (zonal wind compo-
nent) due to processes com-
puted by the subroutine
vdiff (vertical diffusion)

table continued on next page

52 CHAPTER 2. USER GUIDE

Table 2.32: Output file tdiag — continued

dxidt cloud 56 g K/d 3d tdiag dxi/dt (cloud water ice) due
to processes computed by
the subroutine cloud

dxidt vdiff 51 g K/d 3d tdiag dxi/dt (cloud water ice) due
to processes computed by
the subroutine vdiff (ver-
tical diffusion)

dxldt cloud 46 g K/d 3d tdiag dxl/dt (cloud water) due to
processes computed by the
subroutine cloud

dxldt vdiff 41 g K/d 3d tdiag dxl/dt (cloud water) due to
processes computed by the
subroutine vdiff (vertical
diffusion)

gboxarea see Tab. 2.30
geosp see Tab. 2.30
lsp see Tab. 2.30
st see Tab. 2.30
tm1 see Tab. 2.30

2.5 Run scripts

2.5.1 Systematic technical testing of ECHAM6

In many cases, scientists wish to modify the ECHAM6 code for their special applications. Before
any “production” simulation can be started, the modified ECHAM6 version has to be tested
thoroughly. The purpose of this collection of korn shell scripts is to provide a systematic and
easy to use test bed of the ECHAM6 code on a technical level. These test scripts perform very
short simulations in the T31L39 resolution over 12 time steps in different model configurations
in order to trap errors in the code that cause technical malfunctions. However, this kind of
tests can not detect any scientific failure or evaluate the scientific quality of the results. The
tests rely on a comparison of the output of 12 time steps using the cdo diff tool. We apply
the term that the results of two simulations are “bit identical” if the cdo diff command does
not find differences between all netcdf or GRIB output files of these two simulations. This
means that the output on the standard output device of these two simulations is allowed to be
different, e.g. by new messages for a newly built in submodel facility. Futhermore, it is only
checked whether the netcdf representation of the output of the two simulations is bit–identical
but not whether all variables during the run of the ECHAM6 program have bit identical values in
both simulations. In addition to tests on one model version that will be called the test version,
such a test version of the model can be compared to a reference version in the so–called update
test.
The package of scripts performing these tests can be used on various computers without queue-
ing system and can be modified in such a way that individual namelists and input data can be
provided to the test and reference model.
The following tests and combinations of them can be performed by the test tool (including
checkout and compilation of the model which is always performed):

2.5. RUN SCRIPTS 53

compile: This is not a real test. The respective test version is checked out from the svn version
control system if necessary and compiled, but no run is performed.

single test: In this test, the test version is (checked out, compiled, and) run for 12 time steps.
The test is successful if the program does not crash.

parallel test: For this test, a simulation of the test ECHAM6 version over 12 time steps is
performed on 1 and 2 processors, respectively, and the result is compared by the cdo

diff tool for every time step. The test simulation on a single processor is also performed
using the parallel mode of the program. It is therefore not a test for the version of ECHAM6
without message passing interface (mpi). With this kind of test, possible parallelization
errors can be detected like the usage of variables or fields which were not sent to all
processors. The result of these two simulations should be bit identical. On massive
parallel machines, using a lot of processors distributed over several nodes further problems
may occur even if this test is passed. Such problems are often either subtle errors in the
usage of mpi or compiler problems. Supplemental tests have to be performed on a later
stage when the program is ported to such a platform.

nproma test: The section of the globe that is present on a processor after distribution of the
data onto the processors, is vectorized by blocks of maximum length nproma. This means
that — even if only one processor is used — surface fields of the earth do not simply
have two dimensions of the size of longitudes nlon and latitudes nlat but are reshaped
to ngpblks blocks of maximum length nproma. Since nproma may not be a divisor of
nlon×nlat, there may be a last block that contains fewer than nproma elements. This may
lead to problems in the code, if such non–initialized elements of the last block are used
accidentally. The nproma test traps such errors by using two different nproma lengths of
17 and 23 which are both not divisors of nlon in the T31 resolution in the test simulations
and comparing the results of 12 time steps. The results should be bit–identical.

rerun test: ECHAM6 has the possibility to split up a long term simulation into several runs of
a shorter time period and to restart the model at a certain date. The results after restart
are bit identical with those of a simulation without restart. There is a large variety of
errors associated with a failure of the restart facility which can not all be trapped by this
test like wrong scripting of the use of transient boundary conditions, but to pass this test
is a minimum requirement. The base simulation starts at 1999-12-31, 22:00:00h, writes a
restart file at 23:45:00h. It stops after a total of 12 time steps. The rerun files are used to
restart the program and to complete the 12 times steps. The five time steps after restart
are then compared with the simulation that was not interrupted. The results should be
bit–identical.

update test: This test compares the results of two simulations with different model versions
(test version versus reference version). Under certain circumstances, bit–identical results
may be required in this test.

submodel off test: The above standard tests are all run in a model configuration that com-
prises submodels (configuration similar to the CMIP–5 simulations). In some cases, one
may be interested in a configuration without any submodel. This test tries to run ECHAM6

without any submodel. If two revisions are compared, the results of this model configu-
ration are also compared for the test and reference revision.

54 CHAPTER 2. USER GUIDE

2.5.1.1 System requirements

The ECHAM6 test scripts can be adapted to UNIX computers without queuing system. The
automatic configure procedure for the model compilation has to work and the environment has
to provide the possibility to run programs using message passing interface (mpi). The initial
and boundary condition data of ECHAM6 have to be directly accessible in some directory. If
there is no direct access to the version control system of echam (svn), individual model versions
on the computer may be used in the tests, but the path name of the location of these model
versions has to follow the below described conventions.

2.5.1.2 Description of the scripts

In figure 2.1, we present the flow chart of the scripts performing the test simulations of ECHAM6
and the comparison of the results. The scripts need some additional variables that are written
to files by the master script test echam6.sh and read from these files by the dependent scripts.
The variables can be set in the master script as described in Tab. 2.33. The corresponding files
must not be modified by hand. The file c.dat contains the module name of the C compiler,
the file fortran.dat contains the module name of the fortran compiler, the file mpirun.dat

contains the absolute path and name of the command to start programs using message passing
interface (mpi), the file outfiletype.dat contains a number associated with the type of the
output files (1 for GRIB format and 2 for netcdf format).

test echam6.sh: This script contains a definition part where all the path names and the model
version for the test and reference model must be set. It is also the place at which the key
word for the kind of test is defined. It calls the scripts for downloading the respective
model versions from svn if they are not yet present on your computer and calls the compile
and test run scripts.

compile echam6.sh: This script downloads the respective model version from the revision
administration system svn if it is not yet present on your computer and compiles the
model. Compilation can be forced. Note that the compiler options depend on the settings
in the input scripts of the configure procedure and may be different from revision to
revision. Different compiler options may lead to numerically different results although
the algorithms in the code are identical!

test mode.sh: This family of scripts performs the various simulations and the comparison of
the results. The mode is one of single, parallel, nproma, rerun, update, submodeloff,
parallelnproma, parallelnpromarerun, parallelnpromarerunsubmodeloff, all.

test echam6 run.sh: General run script for echam.

test echam6 {test,reference} links.sh: Script that provides the links to all input and
boundary condition files needed for simulations with ECHAM6. In the standard version,
the two scripts are identical but allow the user to apply different files for the reference
and test model, respectively.

test echam6 {test,reference} namelists.sh: These scripts generate the namelists for the
reference and test model separately. In the standard version, these two scripts are iden-
tical. They are useful if the introduction of a new submodel requires a namelist for the
test model that is different from the namelist used for the reference model.

2.5. RUN SCRIPTS 55

test diff.sh: This script performs a comparison of all output files that are common to two
test simulations. It also gives a list of outputfiles that are not common to the two test
simulations. If there are no results written into an output file during the 12 time steps of
the test simulations, the comparison of the files with the cdo diff command leads to an
error message that the respective file structure is unsupported.

2.5.1.3 Usage

The scripts should be copied into a directory that is different form the original ECHAM6 directory
so that you can savely change them without overwriting the original. The files ∗.dat must
not be changed but contain values of “global” variables to all scripts. They are described
in section 2.5.1.2. The variables that have to be modified in test echam6.sh are listed in
table 2.33. Note that the revision specific path of the ECHAM6 model will be automatically
composed as ${REF DIR}/${REF BRANCH} rev${REF REVISION} for the reference model and as
${TEST DIR}/${TEST BRANCH} rev${TEST REVISION} for the test model, respectively. Inside
these directories, the echam model sources are expected to be in a revision independent directory
${REF BRANCH} and ${TEST BRANCH}, respectively. The simulation results will be in directories
${REF ODIR}/0000nrev${REF REVISION} and ${TEST ODIR}/0000nrev${TEST REVISION} for
the reference and test model, respectively. The number n is the number of the experiment.
If in such a directory, an outputfile ∗.err exists, the test tool assumes that the simulation
already exists and does not perform a new simulation. The results are not removed once a test
is performed in order to avoid the repetition of the same test simulation over and over again
(e.g. for the reference model). If experiments have to be repeated, the corresponding directory
has to be removed by hand.
The test is then started by typing ./test echam6.sh in the directory of the test scripts.
The links to input and boundary condition data and the input namelists for
the model revisions can be modified for the reference and the test model in-
dividually by editing the scripts test echam6 {reference,test} links.sh and
test echam6 {reference,test} namelists.sh, respectively. This makes this collection
of test scripts rather flexible: It may be used even for models containing extensions of ECHAM6
like ECHAM6-HAM or ECHAM6-HAMMOZ.

Table 2.33: Variables of test echam6.sh that have to be modified by the user of the
test scripts. The variables are listed in the order of their appearance in test echam6.sh.
Note that the revision specific path of the ECHAM6 model will be automatically com-
posed as ${REF DIR}/${REF BRANCH} ${REF REVISION} for the reference model and as
${TEST DIR}/${TEST BRANCH} ${TEST REVISION} for the test model, respectively.

Variable Explanation
SCR DIR Absolute path to diretory where test scripts are located.
OUTFILETYPE File type of output files. Set to 1 for GRIB format out-

put files and to 2 for netcdf output files. It is recom-
mended to test ECHAM6 with both output formats.

FORTRANCOMPILER If a module has to be loaded in order to use the cor-
rect fortran compiler version, give the fortran compiler
module here.

table continued on next page

56 CHAPTER 2. USER GUIDE

Table 2.33: test echam6.sh — continued

CCOMPILER If a module has to be loaded in order to use the correct
C compiler version, give the C compiler module here.

MPIRUN Absolute path and command to run a program using
message passing interface (mpi).

TEST DIR, REF DIR Absolute base path to directory containing model ver-
sions of test and reference model, respectively. Even if
the model source code is loaded from svn, this directory
has to exist.

TEST BRANCH, REF BRANCH name of branch of test and reference model in the re-
vision control system svn a revision of which has to be
tested, respectively.

TEST REVISION, REF REVISION revision number of test and reference model revision,
respectively.

TEST SVN, REF SVN URL address of test and reference model branch in svn
system, respectively. Can be omitted if model source
code is on local disk.

TEST ODIR, REF ODIR Absolute path where test scripts can open directories
for simulation results of test and reference model, re-
spectively. This directory has to exist.

LCOMP LCOMP=.true. forces compilation, with LCOMP=.false.

compilation is done only if executable is not existing.
MODE One of compile, single, parallel,

nproma, rerun, update, submodeloff,
parallelnproma, parallelnpromarerun,
parallelnpromarerunsubmodeloff, all in order
to perform the corresponding tests.

If some step or test was not successful, more information about the possible error
is given in the protocol files that are written for each step. If the model was
checked out from the svn system, there is a protocol file checkout.log of the check-
out procedure in ${REF DIR}/${REF BRANCH} ${REF REVISION} for the reference model and
${TEST DIR}/${TEST BRANCH} ${TEST REVISION} for the test model, respectively. The con-
figure procedure and compilation is protocolled inside the ${BRANCH} directory of the afore-
mentioned paths in the files config.log and compile.log, respectively. Information about
each simulation can be found inside the directories ${REF ODIR}/0000nrev${REF REVISION}
and ${TEST ODIR0000nrev${TEST REVISION} with n being the number of the test case in-
dicated during the test run procedure on the screen, respectively. In these directories,
the standard and standard error output of the ECHAM6 program can be found in the
0000nrev${REF REVISION}.{log,err} and the 0000nrev${TEST REVISION}.{log,err} files,
respectively. The detailed result of the cdo comparison for each output file is also in these
output directories in respective files diff∗.dat. On the screen, only the most important steps
and results are displayed. A certain test is successfully passed if the comparison for each file
results in the message “0 of r records differ” where r is the number of records.

2.5. RUN SCRIPTS 57

2.5.2 Automatic generation of runscripts for ECHAM6 on blizzard

There is a tool for the automatic generation of standard run scripts that serve to repeat
some basic CMIP5 experiments in two spatial resolutions. These scripts may also serve
as a starting point for more specialized experiments. These run scripts only work on
blizzard.dkrz.de of the DKRZ computing centre and rely on certain conventions concern-
ing directory structures and file names. A description of this tool can be found in the file
contrib/generate-scripts/README ECHAM6 of the main echam directory.

2.5.2.1 Directory structure and file systems on blizzard.dkrz.de

Several file systems are accessible from the supercomputer platform blizzard.dkrz.de (bliz-
zard) that all serve for different purposes. (1) There is the $HOME file system (located in /pf)
that has a quota per user (8GB) and regular backups are available. This file system is good
for holding the source code of the echam model and the run scripts that are used to perform a
computer experiment. (2) There is a $SCRATCH file system (located in /scratch) with very fast
i/o and a limited lifetime of data of 14 days currently. There is no backup available and deletion
of files is automatic. This file system is good for the primary output from a model that will be
treated by some postprocessing immediately after the run. It is not used by the automatically
generated run scripts mentioned above. (3) There is the /work/{PROJECT} file system that also
has fast i/o possibilities. There is no backup available, but data are not automatically deleted.
There is a quota per project and NOT per user. Reasonable use of this file system requires
the coordination of your work with the other members of this project. Although data are not
automatically deleted, it is NOT an archive. It is meant for frequently accessed data only. (4)
There are two kinds of archive systems: /hpss/arch and /hpss/doku, both accessible by pftp.
The automatically generated run scripts make use of the following directories:
/home/zmaw/{USER ID}/{REPOS NAM}: Source code of ECHAM6. The {REPOS NAM} is the direc-
tory echam-6.1.00 for example.
/home/zmaw/{USER ID}/{REPOS NAM}/experiments: In this directory, a subdirectory will be
created for each experiment. This subdirectory will contain a directory scripts in which you
will find the run scripts and postprocessing scripts that were automatically generated for a
particular experiment. The path contains your DKRZ user–id and a {REPOS NAM} that can be
chosen freely.
/work/{PROJECT}/{USER ID}/{REPOS NAM}/experiments: In this directory, a subdirectory
will be created for the output of each experiment. Be careful to move your results into the
archive as soon as you do not work with them regularly.

2.5.2.2 Generation of run scripts

Go into the directory contrib/generate-scripts of your ECHAM6 source code and edit the file
generate-echam.sh. There, you only have to fill in the variables listed in Tab. 2.34.

Table 2.34: Variables needed for the automatic generation of run scripts

Variable Explanation
USER ID user identification number of your account at DKRZ (account num-

ber)
table continued on next page

58 CHAPTER 2. USER GUIDE

Table 2.34: automatic scripts — continued

GROUP ID project number of the project the work space of which you like to
use for the interim storage of your simulation results

REPOS NAM The name of the directory containing the ECHAM6 source code. This
directory has to be in your $HOME directory

EXP ID Your personal experimenter identification number. It is composed
of 3 letters and a four digit number. See:

http://svn.zmaw.de/dokuwiki/doku.php?id=listofids:list of experimenter ids
EXPNAME The experiment name determines the kind and resolution of the

the experiment you are performing. Currently, only four different
experiments are possible: amip-LR or amip-MR (amip experiments
at either T63L47 (LR) or T63L95 (MR) spatial resolution), and
sstClim-LR or sstClim-MR (experiment using climatological sea
surface temperature and sea ice derived from a 500–year mean of the
corresponding coupled pre–industrial control simulation at T63L47
(LR) or T63L95 (MR) spatial resolution)

ECHAM EXE Name of echam executable (normally its echam6)
ACCOUNT Account (project) number under which computing time should be

accounted (can be different of GROUP ID)

2.6 Postprocessing

The ECHAM6 output is not directly suitable for visualization since some of the output fields are
in the spectral space (3d–temperature, vorticity, divergence and the logarithm of the surface
pressure). Furthermore, monthly or yearly mean values are more suitable for a first analysis of a
simulation than instantaneous values at a certain time step. There is a standard postprocessing
tool with which standard plots can be generated. This postprocessing tool also produces tables
of key quantities. The postprocessing consists of two steps: (1) preparation of the ECHAM6

output data, (2) generation of the plots and tables.

2.6.0.3 Software requirements

The postprocessing scripts require the installation of the so–called “afterburner” that performs
the transformation of spectral variables into grid point space and the interpolation to pressure
levels, the installation of the cdo climate data operator package for mean value calculations and
general manipulation of the data, the installation of the ncl NCAR graphics tool to generate the
plots, and of the LATEX program package in order to arrange the viewgraphs in one document.

2.6.0.4 Preparation of the ECHAM6 output data

The output data of an ECHAM6 simulation can be prepared for the postprocessing tool by the
use of the after.sh script. The prerequisite is to have a simulation that was conducted over a
time period of at least one complete year. The output has to be stored in monthly files. These
files can contain either monthly mean values or (mean) values over smaller time intervals. It is
assumed that the arithmetic mean of the output variables over the time steps in these monthly
files is a good estimate of the monthly mean value. Several variables have to be modified by
the user in the after.sh script (see Tab. 2.35).

2.6. POSTPROCESSING 59

Table 2.35: Variables of after.sh in alphabetical order

Variable Explanation
after Location and name of the executable of the afterburner, e.g.:

/client/bin/after

cdo Location and name of the executable of the climate data operators,
e.g.: cdo if no search path is needed

datdir Absolute path to the folder in which the original ECHAM6 simulation
output files are stored

exp Experiment name as defined in the variable out expname of the
runctl namelist (see Tab. 2.12)

filename suffix The extension of the monthly ECHAM6 (standard) output files
after the number of the months (including leading dots), e.g.:
.01 echam.nc. The output files can be in either GRIB format (no
extension) or netcdf format (including the extension .nc).

first year First year of simulation data
last year Last year of simulation data
out format should be set to 1 for GRIB output format of after.sh (standard)
workdir Absolute path to which the output files of after.sh are written

The output files contain monthly mean values over all simulated years as given by the
first year and last year variable. There are 12 output files for the 3–d variables with names
ATM ${exp} ${first year}-${last year} MMM with MMM describing the month and 12 output
files for the 2–d surface variables with names BOT ${exp} ${first year}-${last year} MMM.
These files are the input to the program that actually generates the tables and view graphs.

2.6.0.5 Generation of plots and tables

The plots and tables are generated by the script POSTJOB in the case of a comparison of one
model simulation with era40 data or by the script POSTJOBdiff in the case of the comparison
of two different experiments. Again, some variables have to be set by the user directly in the
scripts. In the case of the script POSTJOB the variables are listed in Tab. 2.36, in the case of
POSTJOBdiff, the variables are listed in Tab. 2.37.

Table 2.36: Variables of POSTJOB in alphabetical order

Variable Explanation
ATM = 1 if viewgraphs of atmosphere fields are desired, = 0 otherwise
atm RES Spectral resolution of the model, e.g. 31 for the T31 spectral resolution
BOT = 1 if viewgraphs of surface fields are desired, = 0 otherwise
COMMENT Any comment that describes your experiment (will appear on the plots)
EXP Experiment name as defined in the variable out expname of the runctl

namelist (see Tab. 2.12)
LEV Number of levels
oce RES Resolution of the ocean, e.g. GR30 for the GROB 30 resolution.
LOG only if LOG ∗ files exist, currently not implemented in after.sh

table continued on next page

60 CHAPTER 2. USER GUIDE

Table 2.36: POSTJOB — continued

PRINTER name of black and white printer, = 0 if printing is not desired. CAUTION:
If the printer PRINTER exists, printing is automatic without asking the user
again!

PRINTERC name of color printer, = 0 if printing is not desired. CAUTION: If the
printer PRINTERC exists, printing is automatic without asking the user again!

TAB = 1 if tables are desired, = 0 otherwise
TYP type of plots. There are 17 possible types: ANN: annual mean values (they

will be calculated from the monthly means by weighting with the length
of the respective months). Seasonal mean values for the seasons DJF (De-
cember, January, February), MAM (March, April, May), JJA (June, July,
August), SON (September, October, November). In the case of the seasonal
mean values, the length of the respective months is not taken into account
when the mean values over the corresponding three months are calculated.
One of the twelve months of a year (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC). The seasonal and monthly (and also annual) mean
values are “climatological” mean values over possibly several years.

WORKDIR Path to the directory where the monthly means prepared by the after.sh

script are stored
YY1 First simulated year
YY2 Last simulated year

Table 2.37: Variables of POSTJOBdiff in alphabetical order for comparison of simulation 1
with simulation 2

Variable Explanation
ATM = 1 if viewgraphs of atmosphere fields are desired, = 0 otherwise
atm RES Spectral resolution of the model, e.g. 31 for the T31 spectral resolution
BOT = 1 if viewgraphs of surface fields are desired, = 0 otherwise
COMMENT Any comment that describes your experiment (will appear on the plots)
AEXP Experiment name as defined in the variable out expname of the runctl

namelist (see Tab. 2.12) for simulation 1
AYY1 First simulated year of simulation 1
AYY2 Last simulated year of simulation 1
BEXP Experiment name as defined in the variable out expname of the runctl

namelist (see Tab. 2.12) for simulation 2
BYY1 First simulated year of simulation 2
BYY2 Last simulated year of simulation 2
LEV Number of levels
oce RES Resolution of the ocean, e.g. GR30 for the GROB 30 resolution.
LOG only if LOG ∗ files exist, currently not implemented in after.sh

PRINTER name of black and white printer, = 0 if printing is not desired. CAUTION:
If the printer PRINTER exists, printing is automatic without asking the user
again!

table continued on next page

2.6. POSTPROCESSING 61

Table 2.37: POSTJOBdiff — continued

PRINTERC name of color printer, = 0 if printing is not desired. CAUTION: If the
printer PRINTERC exists, printing is automatic without asking the user again!

TAB = 1 if tables are desired, = 0 otherwise
TYP type of plots. There are 17 possible types: ANN: annual mean values (they

will be calculated from the monthly means by weighting with the length
of the respective months). Seasonal mean values for the seasons DJF (De-
cember, January, February), MAM (March, April, May), JJA (June, July,
August), SON (September, October, November). In the case of the seasonal
mean values, the length of the respective months is not taken into account
when the mean values over the corresponding three months are calculated.
One of the twelve months of a year (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC). The seasonal and monthly (and also annual) mean
values are “climatological” mean values over possibly several years.

WORKDIR Path to the directory where the monthly means prepared by the after.sh

script are stored

The results are stored in several files in the directory ${WORKDIR} ${TYP}. The tables
are in the files tabelle ${EXP} ${YY1}-${YY2} ${TYP}[.ps] in either ASCII or postscript
(ending .ps) format. The viewgraphs are stored in the files ATM ${TYP} ${EXP}.[tex,ps],
ATMlola ${TYP} ${EXP}.[tex,ps], and BOT ${TYP} ${EXP}.[tex,ps]. The LATEX files ∗.tex
combine several encapsulated postscript format viewgraphs in one document.

62 CHAPTER 2. USER GUIDE

test echam6.sh

compile echam6.sh

test mode.sh

test echam6 run.sh

test echam6

{
reference

test

}
links.sh

link.sh

test echam6

{
reference

test

}
namelists.sh

mpirun.dat

test diff.sh

Figure 2.1: Flow chart of test scripts. The main script in the red box has to be modified by
the user. The scripts in the green boxes can be modified in order to use different model settings
than the standard ones for test or reference model, respectively. The script in the blue box
depends on the test mode and is one of mode=single, parallel, nproma, rerun, submodeloff,
parallelnproma, parallelnpromarerun, parallelnpromarerunsubmodelloff, update, all.
The scripts with mode=parallelnpromarerun, parallelnpromarerunsubmodeloff, and all

need an additional script mve to move the rerun files to files with new names.

Chapter 3

Technical Documentation

3.1 Parallelization

3.1.1 General description

The parallel version of ECHAM is based on a domain distribution approach, i.e. every processor
only handles a limited domain of the whole globe, and only keeps the respective part of the
data. In order to facilitate the distribution, the whole domain is divided into nproca times
nprocb domains with nproca being the number of divisions in north-south direction and nprocb

the number of divisions in east west direction. In order to achieve a good load balance in the
shortwave radiation (and chemical reaction) calculations, each processor treats two parts of the
globe, located opposite to each other. So half of the gridpoints of each processor will be on the
daytime and the other half on the nighttime side on the globe.

Parts of the calculations within ECHAM are performed in spectral space. For these calculations
the spectral coefficients are distributed over processors as well. In order to perform the Fourier
and Legendre transformations - which are global operations in gridpoint and spectral space as
well - two further data distributions are used, named Fourier and Legendre space. The data
distributions are sketched in Figure 3.1, a more detailed discription is given in Section 3.1.3.

Processor Grid (Na x Nb) Processor Grid (Na x Nb) Processor Grid (Na x Nb) Processor Grid (Na x Nb)

Set A Set A

Set B Set B Set B

Spectral SpaceLegendre SpaceFourier SpaceGrid Point Space

zz

z zλ

m

m m n

µ

µ

n

Figure 3.1: Data distribution

The data transpositions, i.e. the redistribution of data in order to perform the global Fourier
and Legendre transformations are performed just before and after these transformations. All
other calculations require almost no further communication (besides a few global sums) because
the data required for the operations is present on the respective processor. A recipe for writing
parallel routines is given in Section 3.1.2.

63

64 CHAPTER 3. TECHNICAL DOCUMENTATION

3.1.2 Recipe for writing or modifying parallel routines

3.1.2.1 Physical parameterizations

The physical parameterization routines (called from the routines gpc or physc) work only on
one block of grid cells of consecutive longitudes. This block can be too short to accomodate
all grid cells of one latitude of it may combine grid cells of more than one latitude into one
block. The length of the block can be chosen arbitrarily and is called nproma. The loop over
the blocks is performed in a higher level routine (scan1) and the actual block length is passed
to the respective subroutines as kproma.
“Physics” computations at different model columns are generally independent from each other
and do not require any communication between processors. Furthermore most computations
do not depend on the absolute location on the globe. If these two conditions are fullfilled no
further action is required for the parallel model version and a physical parameterization routine
may remain unchanged. Loops over the grid cells in one block are performed by the following
statement:

DO i=1, kproma

...

END DO

Special care must be taken if:

1. The routines are not called within the loop over blocks.

In this case the number of longitudes and latitudes handled by the processor
can be accessed by reference to the components nglon and nglat of the variable
local decomposition in module mo decompose (cf. Section 3.1.3.2). A typical loop
over blocks and block elements is given below. dc%ngpblks and dc%nproma (dc%npromz)
are also used to specify the dimensions of local arrays.

use mo_decomposition, only: dc => local_decomposition

real(dp) :: xlocal (dc%nproma, dc%ngpblks) ! declare a local array

...

DO j=1, dc%ngpblks-1 ! loop over local block

DO i=1, dc%nproma ! loop over grid cells in block

...

xlocal (i,j) = 0._dp ! access a local array

...

END DO

END DO

DO i=1, dc%npromz

...

xlocal (i,dc%ngpblks) = 0._dp

...

END DO

2. An index to a global field is required or the absolute position on the globe must be known.

These conditions are met in the short-wave radiation part, where the zenith angle of the
sun must be calculated, or if the horizontal area covered by a column must be known, for
instance in budget calculations.

3.1. PARALLELIZATION 65

Every processor handles two distinct parts of the domain on opposite sides of the globe.
For this reason the first dc%ngpblks/2 blocks are located on the northern hemisphere
whereas the remaining lines are located on the southern hemisphere. The local as well as
the global latitude generally runs from North to South, but some of the global arrays (for
instance Gaussian weights) are still stored in so called ping-pong order (with one latitude
line in the northern hemisphere being followed by the respective latitude line from the
southern hemisphere).

For routines called within gpc or physc the local latitude index jglat and the global ping-
pong index igprow are stored in the module variable nrow(2) in module mo control:

nrow(1) = igprow ! global ping pong index

nrow(2) = jlat ! local index north -> south

3. Global sums are required.

Global sums should be avoided, in order to prevent communication between processors.
In the case that global operations cannot be avoided, routines to derive global (or zonal)
sums may be found in module mo global op (cf. Section 3.1.6).

4. Dependencies between horizontal gridpoints exist.

Dependencies between horizontal gridpoints within the physical routines should be
avoided, in order to prevent communication between processors. If possible these cal-
culations should be done at locations in the program where suitable data transpositions
have already been performed or in dedicated routines (for instance in the semi–Lagrangian
transport routine).

5. Input and Output

Input and Output is addressed in Section 3.1.2.2

3.1.2.2 Input/Output

Two things must be considered when files are read or written:

1. In parallel mode, only one processor is allowed to perform I/O. This processor will also
be called I/O processor. The logical variable p parallel io (from mo mpi) has the value
.true. on the I/O processor only and has the value .false. on all other processors. In
single processor mode (indicated by a value .false. of p parallel) the data is merely
read or written.

2. The values of variables read by the I/O processor must be communicated to the other
processors. If all processors are supposed to receive the same information the broadcast
routine p bcast (from mo mpi) must be called. In case of two or three dimensional arrays
each processor only holds the information relevant for its subdomain. In this case the I/O
must be performed on a global variable (generally only allocated on the processor which
performs I/O) different from the local variable which finally is used for computations. In
order to communicate the data to processors in gridpoint space the routine scatter gp

from module mo transpose must be called. Similar routines exist in order to distribute
data in spectral space (scatter sp) or do gather the data from the other processors
(gather gp, gather sp). Generic interfaces are provided for the broadcast and gather or
scatter routines (cf. Section 3.1.4) for different data types and array dimensions.

66 CHAPTER 3. TECHNICAL DOCUMENTATION

Below some examples are given. Note that generally I/O is not performed directly, but routines
are provided for reading and writing specific formats (Grib, Netcdf).

1. Read and broadcast some information

The broadcast routine requires p io as actual parameter in order to identify the processor
which sends the information, i.e. the processor which performs I/O.

USE mo_mpi, ONLY: p_parallel, p_parallel_io, p_broadcast, p_io

IF (p_parallel) THEN

IF (p_parallel_io) THEN

READ x

ENDIF

CALL p_bcast (x, p_io)

ELSE

READ x

ENDIF

2. Read and scatter some information

In this example x is a 3 dimensional field (kbdim, levels, ngpblks, where kbdim is
the maximum length of block) which finally stores the local information on each proces-
sor. Information on the data distribution of all processors is provided in the variable
global decomposition and must be passed to the scatter and gather routines.

USE mo_mpi, ONLY: p_parallel, p_parallel_io, p_io

USE mo_transpose, ONLY: scatter_gp

USE mo_decompose, ONLY: gl_dc => global_decomposition, &

dc => local_decomposition

REAL, POINTER :: tmp (:,:,:) ! global read buffer

REAL :: x (dc%nproma, dc%nlev, dc%ngpblks)

IF (p_parallel) THEN ! in parallel mode:

NULLIFY(tmp) ! nullify global array not used

IF(p_parallel_io) THEN

ALLOCATE (tmp(dc%nlon,dc%nlev,dc%nlat)) ! allocate global array used

READ x ! read information

ENDIF

CALL scatter_gp(tmp, x, gl_dc) ! scatter

IF (p_parallel_io) DEALLOCATE (tmp) ! deallocate global array

ELSE ! in single processor mode:

READ x ! merely read

ENDIF

3. Gather and write some information

This example is very similar to the previous one.

USE mo_mpi, ONLY: p_parallel, p_parallel_io, p_io

USE mo_transpose, ONLY: gather_gp

USE mo_decompose, ONLY: gl_dc => global_decomposition, &

3.1. PARALLELIZATION 67

dc => local_decomposition

REAL, POINTER :: tmp (:,:,:) ! global read buffer

REAL :: x (dc% nglon, dc% nlev, dc% nglat)

IF (p_parallel) THEN ! in parallel mode:

NULLIFY(tmp) ! nullify global array not used

IF(p_parallel_io) THEN

ALLOCATE (tmp(dc%nproma,dc%nlev,dc%ngpblks)) ! allocate

!global array used

ENDIF

CALL gather_gp(tmp, x, gl_dc) ! gather

IF(p_parallel_io) THEN

WRITE x ! write information

DEALLOCATE (tmp) ! deallocate global array

ENDIF

ELSE ! in single processor mode:

WRITE x ! merely write

ENDIF

3.1.3 Decomposition (mo decompose)

The decomposition is handled by the module mo decompose which is described in this section.
The domain decomposition is performed by a call to the routine decompose with the following
parameters:

global dc

Derived decomposition table (output).

nlat, nlon, nlev

These parameters determine the size of the global domain: nlat is the number of latitudes
(which must be even), nlon is the number of longitudes and nlev is the number of levels.

nm, nn, nk

These parameters give the number of wavenumbers in spectral space. Currently only
triangular truncation is allowed with nm = nn = nk.

nproca, nprocb

Following the ideas of the Integrated Forecast System (IFS) of the European Centre of
Midium–Range Weather Forcast (ECMWF) the total domain is covered by nproca times
nprocb processors. In Gridpoint space the domain is divided into nprocb subdomains in
east-west direction and 2 times nproca subdomains in north-south directions. Details are
given below in the subsections of this paragraph.

The default decomposition may be modified by the following optional parameters:

norot

In order to improve load balancing in the shortwave radiation part half of the gridpoints
of each processor should be exposed to the sun whereas the other half should be located at
the nocturnal side of the globe. Thus each processor handles two subdomains on opposite
sides of the globe. Actually the two domains must consist of latitude rows with the same
absolute values of latitudes, but with opposite sign. The longitude values in the southern

68 CHAPTER 3. TECHNICAL DOCUMENTATION

domain are rotated by 180 degree with respect to the corresponding gridpoints in the
northern domain. Setting this optional parameter to .true. the southern domain is not
rotated. If the code runs on one processor this results in a continuous global domain as
in the serial program version.

lfull m

Setting this optional parameter to .true. ensures that the decomposition in spectral
space does not spread wavenumbers with the same longitudinal wavenumber m over
different processors. This option is not recommended because it decreases load balance
in spectral space.

debug

Setting this optional parameter to .true. runs a second copy of the model using one
additional processor so that nproca × nprocb + 1 processors are required in this case.
Furthermore it is assumed that norot=.true. for this additional run so that the decom-
position corresponds with that of the original serial version.

The values of the variables of the two model copies are compared at certain breakpoints
and further tests for equality of corresponding variables can be inserted at any time of
program execution. This is the most rigorous test of the parallel version.

A value .true. of the logical module variable debug parallel indicates that the parallel
test mode is enabled.

Decomposition information is stored in the module variables global decomposition and
local decomposition of derived type pe decomposed. The elements of the array
global decomposition describe the decomposition for each processor. The scalar type
local decomposition holds the decomposition of the actual processor.
The data type pe decomposed described in the subsection below holds the decomposition in-
formation for a single processor.

3.1.3.1 Information on the whole model domain

The following components of data type pe decomposed have the same contents for all processors
of the model:

nlon: number of longitudes of the global domain.

nlat: number of latitudes of the global domain.

nlev: number of levels of the global domain.

nm: maximum wavenumber used. Only triangular truncation is supported.

The following components depend on nm:

nnp(m+1): number of spectral coefficients for each longitudinal wavenumber m, m = 0, nm

nmp(m+1): displacement of the first point of m-columns within the array storing the spectral
coefficients. Actually nmp(1)=0 and nmp(nm+2)= last index of the array storing the spec-
tral coefficients. The actual number of coefficiens is 2×nmp(nm+2) because 2 coefficients
are stored for each wavenumber.

3.1. PARALLELIZATION 69

3.1.3.2 Information valid for all processes of a model instance

The following components of data type pe decomposed have the same contents for all processors
of each instance of the model:

nprocb: number of processors for the dimension that counts longitudes

nproca: number of processors for the dimension that counts latitudes

d nprocs: number of processors used in the model domain nproca× nprocb.

spe, epe: Index number of first and last processor which handles this model domain.

mapmesh(ib,ia): array mapping from a logical 2-d mesh to the processor index numbers
within the decomposition table global decomposition. ib = 1, nprocb; ia = 1, nproca.

3.1.3.3 General Local Information

The contents of the remaining components of data type pe decomposed is specific for each
processor.

pe: processor identifier. This number is used in the mpi send and receive routines.

set b: index of processor in the direction of logitudes. This number determines the location
within the array mapmesh. processors with ascending numbers handle subdomains with
increasing longitudes (i.e. from west to east).

set a: index of processor in the direction of latitudes. This number determines the location
within the array mapmesh. Processors with ascending numbers handle subdomains with
decreasing values of absolute latitudes (i.e. from the pole to the equator within each
hemisphere).

3.1.3.4 Grid space decomposition

In grid space longitudes and latitudes are spread over processors. Each processor handles all
levels of a model column.

nglat, nglon: number of latitudes and longitudes in grid space handled by this processor.

glats(1:2), glate(1:2): start and end values of global latitude indices.

glons(1:2), glone(1:2): start and end values of global of longitude indices. Each proces-
sor handles two subdomains located on opposite sides of the globe. The first elements
1:nglat/2 of array dimensions indexing latitudes correspond to global latitude indices
glats(1):glate(1). The last elements nglat/2+1:nglat correspond to global latitude
indices glats(2):glate(2). Both, local and global latitude indices run from north to
south. Elements e(i, j), i = 1 : nglon, j = 1 : nglat/2 of a local array correspond to
elements g(k, l), k = glons(1), glone(1), l = glats(1) : glate(1) of the respective global
array.

glat(1:nglat): global latitude index.

glon(1:nglon): offset to global longitude index. These components facilitate indexing of
global arrays. Elements e(i, j), i = 1 : nglon, j = 1 : nglat/2 of a local array correspond
to elements g(glat(i),+glon(i) + j) of the respective global array.

70 CHAPTER 3. TECHNICAL DOCUMENTATION

3.1.3.5 Fourier space decomposition

In order to perform the Fourier transformation, the arrays are redistributed so that each pro-
cessor holds all longitudes or Fourier components. Latitudes are spread over processors as in
grid space. Additionally the levels are distributed.

nflat, nflev: number of latitudes and levels on this processor.

nflevp1: number of levels plus one on this processor. If global arrays hold nlev+1 elements
per column they require nflevp1 on this processor. nflevp1 is equal to nflev+1 if the
last level is handled by this processor, otherwise nflevp1 is equal to nflev.

flats(2), flate(2): start and end values of latitudes indices. As in grid space 2 subdomains
located on the northern and southern hemisphere are handled.

flevs, fleve: start and end values of levels. The elements e(k), k = 1, nflevp1 of a local
array correspond to elements g(l), l = flevs : fleve of the respective global array.

lfused: .true. if this processor is used in Fourier space.

3.1.3.6 Legendre space decomposition

In order to perform the Legendre transformation, the arrays are redistributed so that each
processor holds all latitudes or spectral coefficients for a given longitudinal wavenumber. Levels
are spread over processors as in Fourier space. Additionally the longitudinal wavenumbers are
distributed.

Row of PEs with same set a:

nlm: number of local longitudinal wave numbers m handled by this processor.

lm(1:nlm): actual longitudinal wave numbers handled by this processor.

lnsp: number of complex spectral coefficients handled by this processor.

nlmp(1:nlm): displacement of the first coefficient of columns (with same longitudinal wave
number) within a globally indexed array (as described by components nm, nnp, nmp).

nlnp(1:nlm): number of points on each column with same longitudinal wave number m.

nlnm0: number of coefficients with longitudinal wave number m=0 on this processor.

Column of PEs with same set b:

nllev, nllevp1: number of levels (+1) handled by this processor as in Fourier space.

llevs, lleve: start and end values of level indices as in Fourier space.

3.1. PARALLELIZATION 71

3.1.3.7 Spectral space decomposition

For spectral computations the arrays are redistributed so that each processor holds all levels
for a given spectral coefficient. Longitudinal wavenumbers are spread over processors as in
Legendre space. Remaining spectral coefficients are spread over processors.

snsp, snsp2: number of spectral coefficients handled by this processor and number of coef-
ficients multiplied by 2.

ssps, sspe: first and last spectral coefficient with respect to the ordering in Legendre space.

lfirstc: true, if first global coefficient (m=0,n=0) resides on this processor.

ifirstc: location of first global coefficient on this processor.

np1(1:snsp): value of (n+1) for all coefficients of this processor.

mymsp(1:snsp): value of m for all coefficients of this processor.

nns: number of different n-values for this processor.

nindex(1:nns): values of (n+1) different n-values for this processor.

nsm: number of longitudinal wavenumbers per processor.

sm (1:nsm): actual longitudinal wave numbers handled by this processor.

snnp(1:nsm): number of n coefficients per longitudinal wave number m.

snn0(1:nsm): first coefficient n for a given m.

nsnm0: number of coefficients with m=0 on this processor.

3.1.4 Gather, Scatter and Low Level Transposition Routines
(mo transpose)

The module mo transpose holds the routines to scatter global fields (after input) among the
processors, to gather distributed fields from the processors (for output and debug purposes)
and to perform the transpositions between the different decompositions (grid, Fourier, Legendre
and spectral space).

3.1.4.1 Gather and Scatter routines (gather xx, scatter xx)

Generic interfaces are defined for specific routines to act on arrays of different rank (for 3-D
atmospheric fields, 2-D surface fields, etc.). Arrays of rank 4 are supported in order to handle
arrays allocated in memory buffer. The actual representation (2-D, 3-D) is derived from the
shape of the rank 4 arrays or rank 3 arrays.
All scatter and gather routines have a similar interface:

subroutine scatter xx (gl, lc, gl dc)

subroutine gather xx (gl, lc, gl dc, [source])

72 CHAPTER 3. TECHNICAL DOCUMENTATION

The postfix xx is one of gp, ls, sa or sp and denotes the space to scatter/gather to/from.

The parameter gl is a pointer of rank 1 to 4 pointing to the global array. gl needs to be
allocated only on the processor which performs i/o.

The parameter lc is an array of the same rank as gl holding the distributed array.

The parameter gl dc holds the global decomposition table.

All scatter routines distribute a global array from the i/o processor to the decomposed arrays
of all processors, including itself.

The gather routines have an optional parameter source in order to gather fields from different
model copies run in parallel for debug purposes. source may have one of the following values:

-1: gather from all processors. If more than one model copy is run, the result depends on the
actual I/O processor within the global decomposition table.

0: gather from the i/o processor only. If more than one model copy is run this is the processor
which performs calculations on the whole model domain.

1: gather from all processors besides the I/O processor. If more than one model copy is run
these processors perform the parallel calculations on the distributed domain.

not present: The effect is the same as if source had the value of the variable
debug parallel in mo decompose.

The shape of the arrays gl may be one of the following:

scatter gp, gather gp: (grid space)

(nlon, nlev, ntrac, nlat) 3D tracer fields
(nlon, nlev, nlat, 1) 3D gridpoint field
(nlon, nlev, nlat)
(nlon, nlat, 1, 1) 2D surface field
(nlon, nlat, 1)
(nlon, nlat)

nlon, nlat are the number of longitudes and latitudes of the global field gl as specified by
the respective components of local decomposition. nlev, ntrac are arbitrary numbers
of vertical levels and tracers. If more longitudes are passed only nlon or nglon longitudes
are scattered/gathered.

scatter sp, gather sp: (spectral space)

(nlev, 2, nsp, 1) full spectral field
(nlev, 2, nsp)
(nlev, nnp1, 1, 1) spectral array with
(nlev, nnp1, 1) m=0 coefficients only
(nlev, nnp1) (zonal mean in grid space)

The global field gl has nsp spectral coefficients or nnp1 coefficients for the zonal wavenum-
ber m=0 only as specified by the respective components of local decomposition. The
corresponding decomposed field lc has snsp spectral coefficients or nsnm0 coefficients for
the zonal wavenumber m=0 only. nlev is an arbitrary number of vertical levels. The
second index is 2 because 2 coefficients are stored for each wavenumber.

3.1. PARALLELIZATION 73

scatter sa, gather sa: (symmetric/assymetric Fourier components)

(nlev, 2, nm+1, nhgl) full Fourier transformed field
(nlev, nhgl, 1, 1) Fourier transformed field (m=0 only)
(nlev, nhgl) (zonal mean in grid space)

For reasons of computational efficiency, Legendre transformation is performed on symmet-
ric and asymmetric (with respect to the equator) fields seperately. The symmetric/asym-
metric Fourier components are input to the Legendre transform (output of the inverse
transform). Thus, the decomposition of these fields corresponds to Legendre space, i.e.
vertical levels and zonal wavenumbers are spread over processors.

The global field gl has nm+1 zonal wavenumbers and nlev or nlev+1 vertical levels as
specified by the respective components of local decomposition. The corresponding
decomposed field lc has nlm zonal wavenumbers and nllev or nllevp1 vertical levels.
nhgl=nlat/2 is half of the number of Gaussian latitudes. The second index of the full
fields is 2 because 2 coefficients are stored for each wavenumber.

scatter ls, gather ls: (Legendre space)

Scatter and gather routines to/from Legendre space are used for debugging purposes only.

(2*(nm+1), nlev, nlat, nvar) Fourier components, (gather routine only)
(nlev, 2, nsp) full spectral field
(nlev, nnp1) spectral field with m=0 only

Global Fourier transformed fields (in Legendre space distribution) have 2*(nm+1) spectral
coefficients and nlev or nlev+1 vertical levels as specified by the respective components
of local decomposition. Global spectral fields have nsp spectral wavenumbers or nnp1
coefficients for m=0 only. The corresponding decomposed field lc has nlm zonal wavenum-
bers or lnsp complex spectral coefficients and nllev or nllevp1 vertical levels. nlat is
the number of latitudes and nvar an arbitrary number of variables.

3.1.4.2 Transposition routines (tr xx yy)

The general interface of the transpose routines is:
subroutine tr xx yy (gl dc, sign, xxfields.., yyfields..)

TYPE (pe decomposed) :: gl dc decomposition table
INTEGER :: sign direction of transposition: 1: xx−>yy, -1: xx<−yy
REAL :: xxfields fields in xx-space
REAL :: yyfields fields in yy-space
With xx, yy being one of gp (gridpoint space), ls (Legendre space), or sp (spectral space).
The shape of the array arguments xxfields, yyfields depends on the data structure in the
respective spaces. The specific interfaces are as follows:

SUBROUTINE tr_gp_fs (gl_dc, sign, gp1, gp2, gp3, gp4, gp5, gp6, gp7,&

sf1, sf2, sf3, zm1, zm2, zm3, fs, fs0)

!

! transpose

! sign= 1 : grid point space -> Fourier space

! sign=-1 : grid point space <- Fourier space

!

!

74 CHAPTER 3. TECHNICAL DOCUMENTATION

TYPE (pe_decomposed) ,INTENT(in) :: gl_dc (:) ! decomposition

INTEGER ,INTENT(in) :: sign ! 1:gp>fs; -1:gp<fs

REAL ,INTENT(inout) :: gp1 (:,:,:) ! gridpoint space 3d

...

REAL ,INTENT(inout) :: gp7 (:,:,:) !

REAL ,OPTIONAL ,INTENT(inout) :: sf1 (:,:) ! gridpoint space 2d

REAL ,OPTIONAL ,INTENT(inout) :: sf2 (:,:) ! gridpoint space 2d

REAL ,OPTIONAL ,INTENT(inout) :: sf3 (:,:) ! gridpoint space 2d

REAL ,OPTIONAL ,INTENT(inout) :: zm1 (:,:) ! zonal mean

REAL ,OPTIONAL ,INTENT(inout) :: zm2 (:,:) ! zonal mean

REAL ,OPTIONAL ,INTENT(inout) :: zm3 (:,:) ! zonal mean

REAL ,INTENT(inout) :: fs (:,:,:,:) ! Fourier space

REAL ,OPTIONAL ,INTENT(inout) :: fs0 (:,:,:) ! zonal mean, Four.

SUBROUTINE tr_fs_ls (gl_dc, sign, fs, ls, fs0, ls0)

!

! transpose

! sign= 1 : Fourier space -> Legendre space

! sign=-1 : Fourier space <- Legendre space

!

TYPE (pe_decomposed) ,INTENT(in) :: gl_dc (:) ! decomposition

INTEGER ,INTENT(in) :: sign ! 1:fs>ls; -1:gs<ls

REAL ,INTENT(inout) :: fs (:,:,:,:) ! fs

REAL ,INTENT(inout) :: ls (:,:,:,:) ! ls

REAL ,OPTIONAL ,INTENT(inout) :: fs0 (:,:,:) ! fs, zonal means

REAL ,OPTIONAL ,INTENT(inout) :: ls0 (:,:,:) ! ls, zonal means

SUBROUTINE tr_ls_sp (gl_dc, sign, ls1, sp1, ls2, sp2, ls3, sp3, ls0, sp0)

!

! transpose

! sign= 1 : Legendre space -> spectral space

! sign=-1 : Legendre space <- spectral space

!

TYPE (pe_decomposed) ,INTENT(in) :: gl_dc (:) ! decomposition

INTEGER ,INTENT(in) :: sign ! 1:ls>sp; -1:ls<sp

REAL ,INTENT(inout) :: ls1 (:,:,:) ! Legendre space

REAL ,INTENT(inout) :: sp1 (:,:,:) ! spectral space

...

REAL ,INTENT(inout) :: ls3 (:,:,:) ! Legendre space

REAL ,INTENT(inout) :: sp3 (:,:,:) ! spectral space

REAL ,OPTIONAL ,INTENT(inout) :: ls0 (:,:) ! Legendre (m=0 only)

REAL ,OPTIONAL ,INTENT(inout) :: sp0 (:,:) ! spectral (m=0 only)

3.1.5 High Level Transposition Routines (mo call trans)

The routines in module mo call trans gather the fields to be transposed from the respective
modules and pass them as actual parameters to the routines which finally perform the trans-
formations (defined in module mo transpose). If ECHAM is run in test mode, the correctness

3.1. PARALLELIZATION 75

of the parallel implementation is tested by calling the respective routines for the ingoing and
outgoing parameters. Test routines are also provided for the content of some buffers.

The fields involved in the transformation and test routines are listed below.

subroutine spectral to legendre
Input : from module mo memory ls (Legendre space)
ld
ltp
lvo
lu0
Output : to module mo memory sp (spectral space)
sd
stp
svo
su0

subroutine legendre to fourier
Input : from module mo buffer fft (Legendre space)
fftl buffer for 2D and 3D fields
lbm0 buffer for zonal means (m=0)
Output : to module mo buffer fft (Fourier space)
fftz buffer for 2D and 3D fields
fbm0 buffer for zonal means (m=0)

subroutine fourier to gridpoint
Input : from module mo buffer fft (Fourier space)
fftz buffer for 2D and 3D fields
fbm0 buffer for zonal means (m=0)
Output : to module mo scan buffer (gridpoint space)
d scb
t scb
u scb
v scb
vo scb
dtm scb
dtl scb
alps scb
dalpsl scb
dalpsm scb
u0 scb
du0 scb
ul scb

76 CHAPTER 3. TECHNICAL DOCUMENTATION

subroutine gridpoint to fourier
Input : from module mo scan buffer (gridpoint space)
rh scb
dm scb
vom scb
vol scb
u0 scb
du0 scb
ul scb
Input : from module mo memory g1a (gridpoint space)
alpsm1
dm1
tm1
vom1
Output : to module mo buffer fft (Fourier space)
fftz buffer for 2D and 3D fields
fbm0 buffer for zonal means (m=0)

subroutine fourier to legendre
Input : from module mo buffer fft (Fourier space)
fftz buffer for 2D and 3D fields
fbm0 buffer for zonal means (m=0)
Output : to module mo buffer fft (Legendre space)
fftl buffer for 2D and 3D fields
lbm0 buffer for zonal means (m=0)

subroutine legendre to spectral
Input : from module mo memory ls (Legendre space)
ld
ltp
lvo
lu0
Output : to module mo memory sp (spectral space)
sd
stp
svo
su0

subroutine test memory f (text)
Test : module mo memory f
f

subroutine test memory gp (text)

subroutine test scan buffer (gp, text)

subroutine test row buffer (j, text)

3.1.6 Global operations (mo global op)

In this module, subprograms are collected that perform global operations on 2–d and 3–d fields
like the calculation of global or zonal mean values. Any global operation needs communication

3.2. DATA STRUCTURES AND MEMORY USE 77

between the processors. Even if integrals are split into integrals over the domain that is present
on each processor and the summation over all processors, the global operation subroutines slow
down the ECHAM6 program the more the more processors are used in a simulation. For this
performance reason, it is highly recommended to reduce global operations to a strict minimum
in ECHAM6 and to perform such operations in the postprocessing step that can be performed in
parallel to a longer simulation.

3.2 Data structures and memory use

3.2.1 Output Streams and Memory Buffer

3.2.1.1 Functionality

The Output Stream interface maintains a list of output streams. Generally one ore more
streams are associated to an output file. Each stream has attributes specifying the file name,
file type, etc.. It further holds a linked list of Memory Buffer elements, of 2 to 4 dimensional
arrays and associated meta information.

3.2.1.2 Usage

First, a new output stream must be created by calling subroutine �new stream. Afterwards
fields may be allocated by calling add stream element.

Create a new output stream

The access to the output stream interface is provided by module mo memory base:

USE mo_memory_base, ONLY: t_stream, &
new_stream, delete_stream, &
default_stream_setting, add_stream_element, &
get_stream_element, set_stream_element_info, &
memory_info, &
ABOVESUR2, ...

To create a new output stream the routine new stream has to be called:

TYPE (t_stream) ,pointer :: mystream
...
CALL new_stream (mystream ,’mystream’)

mystream is a pointer holding a reference to the output stream returned by subroutine
new stream. ’mystream’ is the identification name of the output stream.

By default, the output and rerun filenames are derived from the name of the output stream (here
’mystream’) by appending a respective suffix (here ’ mystream’) to the standard filenames.
The content of the output stream is written to the rerun file and to the output file. To change
the defaults, optional parameters may be provided (cf. section 3.2.1.3).

78 CHAPTER 3. TECHNICAL DOCUMENTATION

Add a field to an output stream

To include items in the output stream mystream the routine add stream element has to be
called. A unique name must be given to identify the quantity and a pointer associated to the
field is returned. For example, to add a surface field a and an atmospheric field b with names
’A’ and ’B’, the following sequence of subroutine calls is required:

REAL, POINTER :: a (:,:)
REAL, POINTER :: b (:,:,:)
REAL, POINTER :: c (:,:)
...
CALL add_stream_element (mystream, ’A’ ,a)
CALL add_stream_element (mystream, ’B’ ,b)

By default suitable sizes are assumed for surface (2-d pointer a) or atmospheric fields (3-d
pointer b). To choose other sizes (e.g. spectral fields or a non-standard number of vertical
layers) optional parameters must be specified. The specification of the optional parameters is
given in section 3.2.1.4

A routine is available to associate a pointer (here c) with an item (here ’A’) already included
in the list (previously by another sub-model for example):

CALL get_stream_element (mystream, ’A’, c)

If stream element ’A’ has not been created beforehand, a null pointer is returned for c.

3.2.1.3 Create an output stream

Optional parameters may be passed to subroutines new stream and add stream element in
order to specify the attributes of output streams and memory buffers. Furthermore, routines
are available to change default values for optional parameters.

The interface of the routine to create an output stream is:

3.2. DATA STRUCTURES AND MEMORY USE 79

SUBROUTINE new stream (stream ,name [,filetype] [,post suf] [,rest suf]
[,init suf] [,lpost] [,lpout] [,lrerun] [,lcontnorest]
[,linit] [,interval])

name type intent default description
stream type(t stream) pointer Returned reference to the new output

stream.
name character(len=*) in Name of the new output stream.
[filetype] integer in out filetype Type of output file. The default (GRIB)

may be changed in namelist /SDSCTL/.
Alternatively NETCDF may be passed.

[post suf] character(len=*) in ’ ’//name Suffix of the output file associated with
the stream. The default is derived from
the name of the output stream.

[rest suf] character(len=*) in ’ ’//name Suffix of the rerun file.
[init suf] character(len=*) in ’ ’//name Suffix of initial file.
[lpost] logical in .true. Postprocessing flag. If .true. an output

file is created for this stream.
[lpout] logical in .true. Output flag. The stream is written to the

output file if lpout=.true
[lrerun] logical in .true. If .true. the stream is read/written

from/to the rerun file.
[lcontnorest] logical in — Continue a restart even if this stream is

not present in any rerun file.
[linit] logical in .true. Write to initial file (does not work?)
[interval] type(io time event) in putdata Postprocessing output interval. Default:

12 hours.
Optional parameters are given in brackets []. They should always be passed by keyword because
the number and ordering of optional parameters may change.

Valid values for the argument out filetype are defined within module mo memory base:

INTEGER ,PARAMETER :: GRIB = 1
INTEGER ,PARAMETER :: NETCDF = 2

For specification of a non-standard output time interval data type io time event (de-
fined in module mo time event) has to be passed as argument interval. For
example, in order to write every time step or in 6 hourly intervals, specify:
interval=io time event(1,’steps’,’first’,0) or (6,’hours’,’first’,0), respectively.

Once a stream has been created, a reference can be obtained by calling subroutine get stream:

SUBROUTINE get stream (stream ,name)
name type intent default description
stream type(t stream) pointer Returned reference to the output stream.
name character(len=*) in Name of the output stream.

3.2.1.4 Add a field to the output stream

The routine to add new elements to the output stream is:

80 CHAPTER 3. TECHNICAL DOCUMENTATION

SUBROUTINE add stream element (stream ,name ,ptr [,ldims] [,gdims] [,klev]
[,ktrac] [,units] [,longname] [,repr]
[,lpost] [,laccu] [lmiss,] [missval,]
[,reset] [,lrerun] [,contnorest] [,table]
[,code] [,bits] [,leveltype] [,dimnames]
[,mem info] [,p4] [,no default] [,verbose])

name type intent default description
mandatory arguments :
stream type(t stream) inout Output stream.
name character(len=*) in Name of the field to add to the out-

put stream.
ptr real(:,:[,:][,:]) pointer Returned reference to the memory

of the 2- or 3- or 4-dimensional field.
specification of dimensions :
[ldims(:)] integer in cf. text Local size on actual processor.
[gdims(:)] integer in cf. text Global size of the field.
[klev] integer in cf. text Number of vertical levels.
[ktrac] integer in 0 Number of tracers.
[repr] integer in GRIDPOINT Representation.
[leveltype] integer in cf. text Dimension index of the vertical co-

ordinate.
postprocessing flags :
[lpost] logical in .false. Write the field to the postprocessing

file.
[laccu] logical in .false. “Accumulation” flag: Does no accu-

mulation but divides variable by the
number of seconds of the output in-
terval and resets it to 0 after output.

[reset] real in 0. Reset field to this value after output
(default is zero).

rerun flags :
[lrerun] logical in .false. Flag to read/write field from/to the

rerun file.
[contnorest] logical in .false. If contnorest=.true., continue

restart, stop otherwise.
attributes for NetCDF output :
[units] character(len=*) in ’ ’ Physical units.
[longname] character(len=*) in ’ ’ Long name.
[dimnames(:)] character(len=*) in ’lon’[,’lev’],’lat’ Dimension names.
attributes for GRIB output :
[table] integer in 0 table number.
[code] integer in 0 code number.
[bits] integer in 16 number of bits used for encoding.
Missing values :
[lmiss] logical in .false. If lmiss=.true., missing values are

set to missval, not set at all other-
wise.

[missval] real in −9× 1033 missing value.
miscellaneous arguments :
[mem info] type(memory info) pointer Reference to meta data information.
[p4(:,:,:,:)] real pointer Pointer to allocated memory pro-

vided.
[no default] logical in .false. Default values usage flag.
[verbose] logical in .false. Produce diagnostic printout.

3.2. DATA STRUCTURES AND MEMORY USE 81

Most arguments of the routine are optional. They may be given for the following purposes:

specification of dimensions:
The total size of the field is specified by the parameter gdims. In a parallel environment,
the part allocated on a processor element is specified by the parameter ldims. The
order of dimensions is (lon,lat) for 2–d, (lon,lev,lat) for 3–d and (lon,lev,any,lat) for 4–
dimensional gridpoint fields. The number of size of gdims and ldims corresponds to the
rank of ptr(:,:).

Generally, it is not necessary to give dimension information. The sizes of the fields are
derived from the model field sizes. If a 2–dimensional pointer ptr(:,:) is provided for
ptr, a SURFACE field is assumed. If a 3-dimensional pointer ptr(:,:,:) is provided, a
HYBRID field (lon,lev,lat) is assumed.

For the following cases optional arguments must be specified to overwrite the defaults:

The number of vertical levels differs from the number of model levels

To specify a number of levels different from the standard σ–hybrid co–ordinate sys-
tem used in the model, the parameter klev may be specified. A HYBRID coordinate
system is assumed in this case. However if the field is written to the postprocessing
file (lpost=.true.), it is recommended to either pass a dimension index to param-
eter leveltype or the name of the dimensions to dimnames in order to pass proper
attributes to the NetCDF and GRIB writing routines.

For the usual cases, dimension indices are predefined (cf. table 3.1) and may be
accessed from module mo netcdf. New dimensions may be defined by the use of the
subroutine add dim as described in section 3.2.1.8.

The field is not a gridpoint field
For non Gaussian gridpoint fields appropriate values should be passed as parameter
repr. Predefined values (mo linked list) are:

INTEGER ,PARAMETER :: UNKNOWN = -huge(0)
INTEGER ,PARAMETER :: GAUSSIAN = 1
INTEGER ,PARAMETER :: FOURIER = 2
INTEGER ,PARAMETER :: SPECTRAL = 3
INTEGER ,PARAMETER :: HEXAGONAL = 4
INTEGER ,PARAMETER :: LAND = 5
INTEGER ,PARAMETER :: GRIDPOINT = GAUSSIAN

In all other cases, gdims and ldims have to be defined explicitly.

postprocessing flags:
In order to write a field to an output file, lpost=.true. must be specified. Generally
the actual values of the field are written. However, if laccu=.true. is specified, the
values are divided by the number of seconds of the output interval before output and set
to the value of the variable reset afterwards. The default is 0. In this case the fields
should be incremented at each time step with values multiplied by the time step length
in order to write temporarily averaged values to the output file. If the field is set to the
maximum or minimum value during the output time period, values of reset=-huge(0.)
or reset=huge(0.) shall be passed.

82 CHAPTER 3. TECHNICAL DOCUMENTATION

rerun flags:
To include the field in the rerun files, lrerun=.true. must be specified.

attributes for NetCDF output:
For NetCDF output, the physical units, long name, and dimension names of the field
should be provided.

attributes for GRIB output:
For GRIB output, a table number and code number is required. Appropriate table and
code numbers are proposed in section ??. A predefined value AUTO may be passed as
parameter code in order to automatically generate unique GRIB code numbers. The
number of bits used for encoding may be changed by argument bits.

miscellaneous arguments:
If verbose=.true. is specified, a printout is generated.

The default values of the optional parameters may be changed by calling the subroutine
default stream setting as described below. However if no defaults=.true. is speci-
fied, these changed default values will not be used.

Generally memory is allocated for the argument ptr when calling add stream element,
but memory may be provided externally by passing it via the argument p4. Even if 2–
dimensional or 3–dimensional arrays are accessed via ptr, 4–dimensional fields are used
internally and must be passed for p4 (with dimension sizes (lon,lat,1,1) or (lon,lev,lat,1),
respectively).

Meta data information about memory may be accessed by the argument mem info.

3.2.1.5 Change of default values for optional arguments

The default values for the optional arguments of subroutine add stream entry may be changed
for all subsequent calls related to an output stream by calling the subroutine
default stream setting. This subroutine accepts the same arguments as subroutine
add stream entry:
SUBROUTINE default stream setting (stream [,units] [,ldims] [,gdims] [,repr]

[,lpost] [,laccu] [,reset] [,lrerun]
[,contnorest] [,table] [,code] [,bits]
[,leveltype] [,dimnames] [,no default])

If no default=.true. is not given, previously changed default values are kept.
Properties and attributes of an existing stream element may be changed by calling
set stream element info. Again, the arguments are similar to those of
add stream element info:
set stream element info (stream ,name ,longname [,units] [,ldims]

[,gdims] [,ndim] [,klev] [,ktrac] [,alloc]
[,repr] [,lpost] [,laccu] [,lmiss]
[,missval] [,reset] [,lrerun] [,contnorest]
[,table] [,code] [,bits] [,leveltype]
[,dimnames] [,no default])

3.2.1.6 Access to stream elements

References to previously defined stream elements or to their meta data can be obtained by
calling the subroutine get stream element or get stream element info, respectively:

3.2. DATA STRUCTURES AND MEMORY USE 83

get stream element info (stream, name, info)
name type intent description
stream type(t stream) in output stream to which reference

has to be added.
name character(len=*) in name of stream element.
info type(memory info) out copy of meta data type content.

get stream element (stream, name, ptr)
name type intent description
stream type(t stream) in output stream list.
name character(len=*) in name of stream element.
ptr real(:,:[,:][,:]) pointer returned reference to stream ele-

ment memory.

3.2.1.7 Doubling of stream element entries

It is possible to add a reference to an output stream element to another output stream. By
calling the subroutine add stream reference. This is useful when the same field shall be
written to different output files.

add stream reference (stream ,name [,fromstream] [,lpost] [,kprec)]
name type intent description
stream type(t stream) inout output stream list to extend.
name character(len=*) in name of stream element to add.
[fromstream] character(len=*) in name of output stream to take the

element from.
[lpost] logical in postprocessing flag of the output

stream reference.
[kprec] integer in precision of GRIB format in bits

(default: 16).

3.2.1.8 Definition of new dimensions

If other dimensions are required than those defined in Table 3.1, new dimensions can be defined
by calling the subroutine add dim defined in module mo netcdf.

SUBROUTINE add dim (name ,len [,longname] [,units] [,levtyp]
[,single] [,value] [,indx])

name type intent default description
name character(len=*) in name of dimension.
len integer in size of dimension.
[longname] character(len=*) in ’ ’ long name of dimension.
[units] character(len=*) in ’ ’ physical units of dimension.
[levtyp] integer in 0 GRIB level type.
[single] logical in .false. flag indicating single level fields.
[value] real in 1,2,. . . values of dimension field.
[indx] integer out index to be passed as argu-

ment leveltype to subroutine
add stream element.

84 CHAPTER 3. TECHNICAL DOCUMENTATION

dimension index name klev GRIB values units longname
leveltype

HYBRID ”lev” nlev 109 1,. . . ,nlev hybrid level
at layer
midpoints

HYBRID H ”ilev” nlev+1 109 1,. . . ,nlev+1 hybrid level
at layer in-
terfaces

SURFACE ”surface” 1 1 0 surface field
ABOVESUR2 ”2m” 1 105 0 m level 2m

above the
surface

ABOVESUR10 ”10m” 1 105 0 m level 10m
above the
surface

BELOWSUR ”jpgrnd” 5 111 3,19,78,268,698 cm levels below
the surface

TILES ”tiles” ntiles 70 1,. . . ,ntiles land surface
tile

SOILLEV ”soil layer” nsoil 71 1 cm soil levels
(water)

ROOTZONE ”root zones” nroot zones 72 1,. . . ,nroot zones root zone
CANOPY ”canopy layer” ncanopy 73 1,. . . ,ncanopy layers in

canopy

Table 3.1: Predefined dimensions

3.3 Date and time variables

In a general atmospheric circulation model such as ECHAM6 that can be used for simulations of
historic time periods but also in a “climate mode” for prehistorical time periods together with
an ocean model, the orbit of the Earth around the sun has to be rather flexible. The solar
irradiance is closely linked to the orbit. From the perspective of the Earth, certain aspects of the
orbit can be described with the help of a calendar. There are two different orbits implemented
in ECHAM6: An orbit with strictly 360 days of 24 hours in a year and another orbit that can be
characterized as proleptic Gregorian meaning that the Gregorian calendar of our days is applied
back to the past. Consequently, the historic dates before the 15th October 1582 are different
from those of the proleptic Gregorian calendar. E.g., historically, there is no 14th October
1582, but this date is identified with the 4th October 1582 of the historic Julian calendar. The
proleptic Gregorian calendar goes back to 4712/01/01 12:00:00 UTC time B.C. including a year
0. Fortran90 data structures are ideal to store and manipulate the heterogeneous structure of
time expressed in a calendar date and time of a day. We describe these data structures and
their usage in the following

3.3.1 Date–time variables in ECHAM6

The date and time of the Gregorian proleptic calendar can be represented in various ways
leading to the following definitions of date–time (DT) variables: time days, time intern,
time native. Their definition can be found in mo time conversion.f90.

3.3. DATE AND TIME VARIABLES 85

Listing 3.1: time days

type time_days

! ...

integer :: day ! day in the proleptic Gregorian

! calendar since 4712/01/01 B.C.

integer :: second ! second in the day [0, 86399]

end type time_days

Listing 3.2: time intern

type time_intern

! ...

integer :: ymd ! ‘year month day ‘ of the proleptic

! Gregorian calendar

! (leading zeros omitted);

! e.g. 2001008 is the 8th of Oct. 200.

integer :: hms ! ‘hour minute second ‘ of ymd

! (leading zeros omitted);

end type time_intern

Listing 3.3: time native

type time_native

! ...

integer :: year , month , day , hour , minute , second

end type_native

One can also use an array of 6 elements containing year, month, hour, minute, second.

For the composed data types time days, time intern, and time native, a direct access of
the components is not possible because they are declared being “PRIVATE”. Instead, they are
accessible by the use of subprograms defined in mo time conversion.f90. The reason for this
is the fact that it is easy to create dates and times that is not valid. Then, all subroutines using
such an invalid DT–variable would fail. In order to avoid this, all the subroutines changing one
of the components of the DT–variables test whether the resulting dates and times are correct.

3.3.2 Usage of DT–variables

A family of overloaded subroutines and functions is provided in the module
mo time conversion.f90 by ECHAM6 to handle date–time variables:

• Set a DT–variable of type time days, time native or time intern by the use of the
overloaded routine tc set. Example:

Listing 3.4: tc set

type(time_native) :: my_date

call tc_set(kyear , kmonth , kday , khour , kminute , ksecond ,

mydate)

86 CHAPTER 3. TECHNICAL DOCUMENTATION

This call of tc set will search for the special routine set native that actually sets
a variable of type time native from the input variables kyear, kmonth, kday, khour,
kminute, and ksecond.

• Conversion of a variable of one time format into another:

There are 3 ∗ 2 = 6 possible conversions which can all be performed by a call of
tc convert(var1,var2), var1, var2 being of one of the 3 types.

• Getting components of a DT–variable

The components of a DT–variable can be retrieved by a call to the subroutine tc get.
The first argument of tc get is a variable of one of the DT–variable types, the follow-
ing arguments are all optional. Their names are the names of the components of the
corresponding DT–variable of the first argument. Example:

Listing 3.5: tc get

type(time_native) :: my_date

call tc_get(my_date ,year=kyear)

call tc_get(my_date ,year=kyear ,second=ksecond)

In that case, the first call of tc get only retrieves the value of the year, whereas the
second call retrieves the year and the second of my date.

• Comparison of DT–variables

DT–variables can be compared using certain operators in order to know whether a certain
date is before or after a second date. Fortran90 provides the possibility to overload
intrinsic Fortran90 functions such as “<”, “>” or “==”. You can then use these operator
symbols also for the comparison of user defined data types. In that case, the user has to
provide an order on the domain of these variables.

Listing 3.6: overloaded operators

USE mo_time_conversion , ONLY: operator(<),operator (==),

operator(>)

TYPE(time_native) :: var1 , var2

! ...

IF (var1 < var2) THEN

!...

The argument of the if statement is true if the date of var1 is before the date of var2.

3.3.3 Information about actual date and time in ECHAM6.

There are three variables in which the time and date of the previous (t−∆t), the current (t),
and the next time step (t+ ∆t) are stored. These variables are defined in mo time control:

Listing 3.7: date and time variables

type(time_days) :: previous_date , current_date , next_date

3.4. SUBMODEL INTERFACE 87

3.3.4 Variables describing repeated events.

The variable types of DT variables described so far are used for a representation of absolute date
and time in ECHAM6. In this paragraph, the data structure associated with repeated events is
presented. This data structure is used in the namelists (section 2.2) to determine the frquency
of certain events. Each variable describing repeated events consist of an integer number and
the unit, describing the frequency of the event. In addition, some keywords can be set which
determine the position of the repeated events relative to the absolute time axis. The underlying
data structure is defined in mo time event:

Listing 3.8: io time event

type io_time_event

integer :: counter ! interval

character(len =20) :: unit ! unit

character(len =20) :: adjustment ! adjustment

integer :: offset ! offset

end type io_time_event

With the help of this data structure, we may define a variable outfrq that will describe the
output frequency of a stream for example.

Listing 3.9: outfrq

type(io_time_event) :: outfrq

A variable of such a type can be read from the namelist like all the other variables describing
repeated events (putdata, putrerun) but we also may whish to communicate it to all processors.
For this purpose, there is a special subroutine p bcast event defined in mo time control.f90

which is used in the following way:

Listing 3.10: p bcast event

USE mo_time_control , ONLY: p_bcast_event

call p_bcast_event(outfrq , pe_io)

The call of p bcast event sends this variable to all processors. Then, the variable outfrq can
be used in the definition of a new stream.

3.4 Submodel interface

3.4.1 Introduction

ECHAM6 allows the implementation of so–called submodels. A submodel can describe any addi-
tional physical processes that will either be linked in a one–way coupling to echam or a two–way
coupling. A one–way coupling in this context means that the additional physical processes are
such that they need input from the ECHAM6 base model but do not change the general circu-
lation. One could also say that the results of such a model are derived from the ECHAM6 base
model in a “diagnostic” way. If the base model is linked by a two–way coupling to a submodel,
the submodel interacts with ECHAM6 and modifies the general circulation. An example for the
one–way coupling would be diagnostic chemistry implemented in such a way that the chemical
species are transported by the winds given by ECHAM6 and the chemical reactions are driven
by the pressure, temperature, humidity and radiation simulated by ECHAM6. Nevertheless, the
concentration of the chemical species would not be allowed to influence these quantities. A

88 CHAPTER 3. TECHNICAL DOCUMENTATION

two–way coupling would be introduced if the concentration of the chemical species influences
the radiation by absorption of radiation for example.
The implementation of such submodels needs an interface to the submodel that provides a
certain set of variables to the submodel routines. In fact, the submodel interface is a collection
of dummy subroutines in ECHAM6 inside which the special subroutines of a submodel can be
called. These special subroutines will not be a part of ECHAM6 but will perform all submodel
specific tasks as the solution of the chemical kinetic equations for example. In addition to
this submodel interface, many submodels need the introduction of tracers that are transported
with the air flow like water waper is transported. These tracers are often associated with
certain chemical species having specific physico–chemical properties. In general, it may occur
that a certain species is represented by several tracers (e.g. various CO tracers depending on
the region of emission of CO, so–called “tagged” tracers) so that every tracer has the same
physico–chemical properties. Conceptually, it is better to separate the tracer properties from a
list of physico–chemical species properties so that this information is present only once in the
program. This avoids inconsistent definition of species properties and is therefore more user
friendly. This separation is not yet finished in the current ECHAM6 version and the species data
structure will therefore not be described here although it is present. As soon as this species
concept has settled, this description will be added.

3.4.2 Submodel Interface

The submodel interface consists of the subroutines listed in Tab. 3.2 that are all collected in
module mo submodel interface.f90.

Table 3.2: Submodel interface subroutines. The subroutines are listed in the same order as
they are called in ECHAM6.

Subroutine Called in Explanation
init subm initialize.f90 Initialization of submodel. This com-

prises reading of specific submodel
data. However, this is not the right
place to read gridded fields.

init subm memory init memory of
mo memory streams.f90

Allocation of memory for submodel
either in streams or 2– and 3–
dimensional fields.

stepon subm stepon.f90 Called at the beginning of a new time
step. Good for reading data at regular
time intervals.

physc subm 1 physc.f90 Call in the “physics” part of calcula-
tion. The “physics” processes are pro-
cesses in one column over a grid cell.
This subroutine is called before the ra-
diation calculation.

radiation subm 1 rrtm interface of
mo radiation.f90

Submodels can modify the optical
properties of the atmosphere here. It
is called before the radiation fluxes are
calculated.

table continued on next page

3.4. SUBMODEL INTERFACE 89

Table 3.2: Submodel interface — continued

radiation subm 2 rrtm interface of
mo radiation.f90

Good for radiation diagnostics per-
formed by submodels.

vdiff subm vdiff.f90 In this subroutine, net surface fluxes
can be calculated that will be used as
boundary conditions in the vertical dif-
fusion equation. Good for surface emis-
sion fluxes and dry deposition fluxes.

rad heat subm radheat.f90 Diagnostic of heating rates.
physc subm 2 physc.f90 First interface that is good for cal-

culation of physical processes of sub-
models like chemical kinetics or aerosol
physics. It is called before cloud
physics but after vdiff and radheat

cuflx subm cuflux.f90 Submodels can interfere with convec-
tion here. E.g. wet deposition of con-
vective clouds has to be implemented
here.

cloud subm cloud.f90 Implement interaction between cloud
physics and submodels here. E.g. “wet
chemistry” should be implemented
here. Wet deposition of large scale pre-
cipitation has to be implemented here.

physc subm 3 physc.f90 Second interface that is good for cal-
culation of physical processes of sub-
models like chemical kinetics or aerosol
physics. It is called after cloud physics.

physc subm 4 physc.f90 This is the right place for submodel di-
agnostics after all physics processes are
calculated.

free subm memory free memory of
mo memory streams.f90

Deallocation of allocated submodel
memory here is mandatory, otherwise
the internal rerun process will fail. In
addition, it is very important to set
back all submodel switches to their de-
fault values. In particular switches that
indicate that certain fields are allocated
or certain data are read.

Inside these interface routines, the submodel specific routines should be called. These calls
have to be implemented all into mo submodel interface.f90 and the calls have to be effective
if and only if the respective submodel is switched on. Since mo submodel interface.f90 is
part of the ECHAM6 code but the submodel routines are not, the calls should be switched off/on
by compiler directives. In that case, the calls can be included in the standard version of
mo submodel interface.f90. Neither an extra version of this module has to be kept by the
submodel users nor any update has to be done “by hand”.

The parameter lists of the submodel interface routines are described in the following subsections.

90 CHAPTER 3. TECHNICAL DOCUMENTATION

3.4.2.1 Interface of init subm

Listing 3.11: init subm

SUBROUTINE init_subm

This subroutine has no parameter list.

3.4.2.2 Interface of init subm memory

Listing 3.12: init subm memory

SUBROUTINE init_subm_memory

This subroutine has no parameter list. In general, the fields allocated here belong to the
submodel. Since the submodel is supposed to be organized in modules, global submodel fields
should be defined as module variables and can be brought to any submodel subroutine by use
statements. Streams are easily accessible by their names. Nevertheless, subroutines of the
kind get stream or get stream element are slow and should not be used repeatedly. Instead,
pointers to the stream elements can be stored as global submodel variables and used later in
the program.

3.4.2.3 Interface of stepon subm

Listing 3.13: stepon subm

SUBROUTINE stepon_subm (current_date , next_date)

TYPE(time_days) :: current_date

TYPE(time_days) :: next_date

Table 3.3: Parameter list of arguments passed to stepon subm

name type intent description
current date time days time and date of current time step
next date time days time and date of prognostic time step

3.4.2.4 Interface of physc subm 1

Listing 3.14: physc subm 1

SUBROUTINE physc_subm_1 (kproma , kbdim , klev , &

klevp1 , ktrac , krow , &

papm1 , paphm1 , &

ptm1 , ptte , &

pxtm1 , pxtte , &

pqm1 , pqte)

INTEGER , INTENT(in) :: kproma

INTEGER , INTENT(in) :: kbdim

INTEGER , INTENT(in) :: klev

3.4. SUBMODEL INTERFACE 91

INTEGER , INTENT(in) :: klevp1

INTEGER , INTENT(in) :: ktrac

INTEGER , INTENT(in) :: krow

REAL(dp), INTENT(in) :: papm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: paphm1(kbdim ,klevp1)

REAL(dp), INTENT(in) :: ptm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: ptte (kbdim ,klev)

REAL(dp), INTENT(inout) :: pxtm1 (kbdim ,klev ,ktrac)

REAL(dp), INTENT(inout) :: pxtte (kbdim ,klev ,ktrac)

REAL(dp), INTENT(in) :: pqm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pqte (kbdim ,klev)

Table 3.4: Parameter list of arguments passed to physc subm 1

name type intent description
kproma integer in actual length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

kbdim integer in maximum length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
klevp1 integer in number of layers plus one
ktrac integer in number of tracers
krow integer in index number of block of geographical

longitudes
papm1(kbdim,klev) double prec. in pressure of dry air at center of model

layers at time step t−∆t
paphm1(kbdim,klevp1) double prec. in pressure of dry air at interfaces between

model layers at time step t−∆t
ptm1(kbdim,klev) double prec. in temperature at center of model layers

at time step t−∆t
ptte(kbdim,klev) double prec. in temperature tendency at center of

model layers accumulated over all pro-
cesses of actual time step until call of
this subroutine

pxtm1(kbdim,klev,ktrac) double prec. inout tracer mass or molar mixing ratio with
respect to dry air at center of model
layers at time step t−∆t

pxtte(kbdim,klev,ktrac) double prec. inout tendency of tracer mass or molar mix-
ing ratio with respect to dry air at cen-
ter of model layers accumulated over all
processes of actual time step until call
of this subroutine

table continued on next page

92 CHAPTER 3. TECHNICAL DOCUMENTATION

Table 3.4: Parameters of physc subm 1 — continued

pqm1(kbdim,klev) double prec. in specific humidity (with respect to dry
air) at center of model layers at time
step t−∆t

pqte(kbdim,klev) double prec. in tendency of specific humidity (with re-
spect to dry air) at center of model lay-
ers accumulated over all processes of
actual time step until call of this sub-
routine

3.4.2.5 Interface of radiation subm 1

Listing 3.15: radiation subm 1

SUBROUTINE radiation_subm_1 &

(kproma ,kbdim ,klev ,krow ,&

ktrac ,kaero ,kpband ,kb_sw ,&

aer_tau_sw_vr ,aer_piz_sw_vr ,aer_cg_sw_vr ,&

aer_tau_lw_vr ,&

ppd_hl ,pxtm1)

INTEGER , INTENT(in) :: kproma

INTEGER , INTENT(in) :: kbdim

INTEGER , INTENT(in) :: klev

INTEGER , INTENT(in) :: krow

INTEGER , INTENT(in) :: ktrac

INTEGER , INTENT(in) :: kaero

INTEGER , INTENT(in) :: kpband

INTEGER , INTENT(in) :: kb_sw

REAL(dp), INTENT(inout) :: aer_tau_sw_vr(kbdim ,klev ,kb_sw), &

aer_piz_sw_vr(kbdim ,klev ,kb_sw), &

aer_cg_sw_vr(kbdim ,klev ,kb_sw), &

aer_tau_lw_vr(kbdim ,klev ,kpband),&

REAL(dp), INTENT(in):: ppd_hl(kbdim ,klev)

REAL(dp), INTENT(in):: pxtm1(kbdim ,klev ,ktrac)

Table 3.5: Parameter list of arguments passed to radiation subm 1

name type intent description
kproma integer in actual length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

kbdim integer in maximum length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
table continued on next page

3.4. SUBMODEL INTERFACE 93

Table 3.5: Parameters of radiation subm 1 — continued

krow integer in index number of block of geographical
longitudes

ktrac integer in number of tracers
kaero integer in switch for aerosol radiation coupling
kpband integer in number of bands in the thermal radia-

tion wavelength range
kb sw integer in number of bands in the solar radiation

wavelength range
aer tau sw vr

(kbdim,klev,kb sw)

double prec. inout aerosol optical depth of model layers
for solar radiation wavelength bands.
Here, the model layers are ordered from
the Earth’s surface (level index 1) to
the top of the atmosphere (level index
klev) as indicated by vr = vertically
reversed

aer piz sw vr

(kbdim,klev,kb sw)

double prec. inout aerosol single scattering albedo for so-
lar radiation wavelength bands. Here,
the model layers are ordered from the
Earth’s surface (level index 1) to the
top of the atmosphere (level index
klev) as indicated by vr = vertically
reversed

aer cg sw vr

(kbdim,klev,kb sw)

double prec. inout aerosol asymmetry factor for solar ra-
diation wavelength bands. Here, the
model layers are ordered from the
Earth’s surface (level index 1) to the
top of the atmosphere (level index
klev) as indicated by vr = vertically
reversed

aer tau lw vr

(kbdim,klev,kpband)

double prec. inout aerosol optical depth of model layers for
thermal radiation wavelength bands.
Here, the model layers are ordered from
the Earth’s surface (level index 1) to
the top of the atmosphere (level index
klev) as indicated by vr = vertically
reversed

ppd hl(kbdim,klev) double prec. in absolute value of dry air pressure dif-
ference between upper and lower limit
of model layers at time t−∆t

pxtm1(kbdim,klev,ktrac)double prec. in tracer mass or molar mixing ratio with
respect to dry air at center of model
layers at time step t−∆t

3.4.2.6 Interface of radiation subm 2

Listing 3.16: radiation subm 2

94 CHAPTER 3. TECHNICAL DOCUMENTATION

SUBROUTINE radiation_subm_2(kproma , kbdim , krow , klev , &

ktrac , kaero , &

pxtm1)

INTEGER , INTENT(in) :: kproma

INTEGER , INTENT(in) :: kbdim

INTEGER , INTENT(in) :: krow

INTEGER , INTENT(in) :: klev

INTEGER , INTENT(in) :: ktrac

INTEGER , INTENT(in) :: kaero

REAL(dp), INTENT(in) :: pxtm1 (kbdim ,klev ,ktrac)

Table 3.6: Parameter list of arguments passed to radiation subm 2

name type intent description
kproma integer in actual length of block of geographical

longitudes (one longitude block can
contain grid cells of various geograph-
ical latitudes)

kbdim integer in maximum length of block of geo-
graphical longitudes (one longitude
block can contain grid cells of various
geographical latitudes)

krow integer in index number of block of geographical
klev integer in number of model levels (layers)
ktrac integer in number of tracers
kaero integer in switch for aerosol radiation coupling
pxtm1(kbdim,klev,ktrac)double prec. in tracer mass or molar mixing ratio

with respect to dry air at center of
model layers at time step t−∆t

3.4.2.7 Interface of vdiff subm

Listing 3.17: vdiff subm

SUBROUTINE vdiff_subm(kproma , kbdim , klev , klevp1 , &

ktrac , krow , &

ptm1 , pum1 , pvm1 , pqm1 , &

papm1 , paphm1 , paphp1 , pgeom1 , ptslm1 ,&

pxtm1 , pseaice ,pforest , &

pfrl , pfrw , pfri , pcvs , pcvw , &

pvgrat , ptsw , ptsi , &

pu10 , pv10 , &

paz0 , paz0l , paz0w , paz0i , &

pcfm , pcfnc , pepdu2 , pkap , &

pri , ptvir1 , ptvl , &

psrfl , pcdn , pqss , pvlt , &

loland , &

3.4. SUBMODEL INTERFACE 95

pxtte , pxtems , &

pxlm1 , pxim1)

INTEGER , INTENT(in) :: kproma

INTEGER , INTENT(in) :: kbdim

INTEGER , INTENT(in) :: klev

INTEGER , INTENT(in) :: klevp1

INTEGER , INTENT(in) :: ktrac

INTEGER , INTENT(in) :: krow

REAL(dp), INTENT(in) :: ptm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pum1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pvm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pqm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: papm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: paphm1 (kbdim ,klev +1)

REAL(dp), INTENT(in) :: paphp1 (kbdim ,klev +1)

REAL(dp), INTENT(in) :: pgeom1 (kbdim ,klev)

REAL(dp), INTENT(in) :: ptslm1 (kbdim)

REAL(dp), INTENT(inout) :: pxtm1 (kbdim ,klev ,ktrac)

REAL(dp), INTENT(in) :: pseaice (kbdim)

REAL(dp), INTENT(in) :: pforest (kbdim)

REAL(dp), INTENT(in) :: pfrl (kbdim)

REAL(dp), INTENT(in) :: pfrw (kbdim)

REAL(dp), INTENT(in) :: pfri (kbdim)

REAL(dp), INTENT(in) :: pcvs (kbdim)

REAL(dp), INTENT(in) :: pcvw (kbdim)

REAL(dp), INTENT(in) :: pvgrat (kbdim)

REAL(dp), INTENT(in) :: ptsw (kbdim)

REAL(dp), INTENT(in) :: ptsi (kbdim)

REAL(dp), INTENT(in) :: pu10 (kbdim)

REAL(dp), INTENT(in) :: pv10 (kbdim)

REAL(dp), INTENT(in) :: paz0 (kbdim)

REAL(dp), INTENT(in) :: paz0l (kbdim)

REAL(dp), INTENT(in) :: paz0w (kbdim)

REAL(dp), INTENT(in) :: paz0i (kbdim)

REAL(dp), INTENT(in) :: pcfm (kbdim ,klev)

REAL(dp), INTENT(in) :: pcfnc (kbdim)

REAL(dp), INTENT(in) :: pepdu2

REAL(dp), INTENT(in) :: pkap

REAL(dp), INTENT(in) :: pri (kbdim)

REAL(dp), INTENT(in) :: ptvir1 (kbdim ,klev)

REAL(dp), INTENT(in) :: ptvl (kbdim)

REAL(dp), INTENT(in) :: psrfl (kbdim)

REAL(dp), INTENT(in) :: pcdn (kbdim)

REAL(dp), INTENT(in) :: pqss (kbdim ,klev)

REAL(dp), INTENT(in) :: pvlt (kbdim)

LOGICAL , INTENT(in) :: loland (kbdim)

REAL(dp), INTENT(inout) :: pxtte (kbdim ,klev ,ktrac)

REAL(dp), INTENT(inout) :: pxtems (kbdim ,ktrac)

96 CHAPTER 3. TECHNICAL DOCUMENTATION

REAL(dp), INTENT(in) :: pxlm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pxim1 (kbdim ,klev)

Table 3.7: Parameter list of arguments passed to vdiff subm

name type intent description
kproma integer in actual length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

kbdim integer in maximum length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
klevp1 integer in number of layers plus one
ktrac integer in number of tracers
krow integer in index number of block of geographical

longitudes
ptm1(kbdim,klev) double prec. in temperature at center of model layers

at time step t−∆t
pum1(kbdim,klev) double prec. in zonal wind component at center of

model layers at time step t−∆t
pvm1(kbdim,klev) double prec. in meridional wind component at center

of model layers at time step t−∆t
pqm1(kbdim,klev) double prec. in specific humidity (with respect to dry

air) at center of model layers at time
step t−∆t

papm1(kbdim,klev) double prec. in pressure of dry air at center of model
layers at time step t−∆t

paphm1(kbdim,klevp1) double prec. in pressure of dry air at interfaces between
model layers at time step t−∆t

paphp1(kbdim,klevp1) double prec. in pressure of dry air at interfaces between
model layers at prognostic time step t+
∆t

pgeom1(kbdim,klev) double prec. in geopotential at center of model layers
at time step t−∆t

ptslm1(kbdim) double prec. in surface temperature at time step t−∆t
pxtm1(kbdim,klev,ktrac) double prec. inout tracer mass or molar mixing ratio with

respect to dry air at center of model
layers at time step t−∆t

pseaice(kbdim) double prec. in sea ice fraction
pforest(kbdim) double prec. in forest fraction
pfrl(kbdim) double prec. in land fraction
pfrw(kbdim) double prec. in surface water fraction
pfri(kbdim) double prec. in surface ice fraction

table continued on next page

3.4. SUBMODEL INTERFACE 97

Table 3.7: Parameters of vdiff subm — continued

pcvs(kbdim) double prec. in snow cover fraction
pcvw(kbdim) double prec. in wet skin fraction
pvgrat(kbdim) double prec. in vegetation ratio
ptsw(kbdim) double prec. in surface temperature over water
ptsi(kbdim) double prec. in surface temperature over ice
pu10(kbdim) double prec. in zonal wind component 10 m above the

surface
pv10(kbdim) double prec. in meridional wind component 10 m above

the surface
paz0(kbdim) double prec. in roughness length
paz0l(kbdim) double prec. in roughness length over land
paz0w(kbdim) double prec. in roughness length over water
paz0i(kbdim) double prec. in roughness length over ice
pcfm(kbdim,klev) double prec. in stability dependent momentum trans-

fer coefficient at center of model layers
pcfnc(kbdim) double prec. in function of heat transfer coefficient; not

set?
pepdu2 double prec. in a constant set in vdiff.f90. It is used

e.g. in mo surface land as the allowed
minimum of the square of the absolute
wind velocity

pkap double prec. in von Karman constant
pri(kbdim) double prec. in Richardson number for moist air
ptvir1(kbdim,klev) double prec. in potential density temperature
ptvl(kbdim) double prec. in virtual temperature over land
psrfl(kbdim) double prec. in net surface solar radiation flux at time

(?) t
pcdn(kbdim) double prec. in heat transfer coefficient averaged over

land, water and ice cover fraction of a
grid box

pqss(kbdim,klev) double prec. in specific humidity at which the air is sat-
urated at time (?) t

pvlt(kbdim) double prec. in obsolete, will be removed
loland(kbdim) double prec. in logical land mask including glaciers
pxtte(kbdim,klev,ktrac) double prec. inout tendency of tracer mass or molar mix-

ing ratio with respect to dry air at cen-
ter of model layers accumulated over all
processes of actual time step until call
of this subroutine

pxtems(kbdim,ktrac) double prec. inout surface emission flux
pxlm1 double prec. in cloud liquid water content at center of

model layers at time step t−∆t
pxim1 double prec. in cloud water ice content at center of

model layers at time step t−∆t

3.4.2.8 Interface of rad heat subm

98 CHAPTER 3. TECHNICAL DOCUMENTATION

Listing 3.18: rad heat subm

SUBROUTINE radheat_subm

(kproma ,kbdim ,klev ,&

klevp1 ,krow ,pconvfact ,&

pflxs ,pflxt)

INTEGER , INTENT(in) :: kproma

INTEGER , INTENT(in) :: kbdim

INTEGER , INTENT(in) :: klev

INTEGER , INTENT(in) :: klevp1

INTEGER , INTENT(in) :: krow

REAL(dp), INTENT(in) :: pconvfact(kbdim ,klev)

REAL(dp), INTENT(in) :: pflxs(kbdim ,klevp1), pflxt(kbdim ,klevp1

)

Table 3.8: Parameter list of arguments passed to rad heat subm

name type intent description
kproma integer in actual length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

kbdim integer in maximum length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
klevp1 integer in number of layers plus one
krow integer in index number of block of geographical

longitudes
pconvfact(kbdim,klevp1) double prec. in conversion factor for conversion of en-

ergy flux differences between upper and
lower layer boundary to heating rate of
the air in this layer. The factor is cal-
culated for the time at time step t−∆t.

pflxs(kbdim,klevp1) double prec. in net energy flux of solar radiation inte-
grated over all solar radiation bands at
the layer interfaces for time t

pflxt(kbdim,klevp1) double prec. in net energy flux of thermal radiation
integrated over all thermal radiation
bands at the layer interfaces for time
t

3.4.2.9 Interface of physc subm 2

Listing 3.19: physc subm 2

3.4. SUBMODEL INTERFACE 99

SUBROUTINE physc_subm_2 &

(kproma , kbdim , klev , klevp1 , ktrac , krow , &

itrpwmo , itrpwmop1 , &

paphm1 , papm1 , paphp1 , papp1 , &

ptm1 , ptte , ptsurf , &

pqm1 , pqte , pxlm1 , pxlte , pxim1 , pxite , &

pxtm1 , pxtte , &

paclc , ppbl , &

loland , loglac)

INTEGER , INTENT(in) :: kproma

INTEGER , INTENT(in) :: kbdim

INTEGER , INTENT(in) :: klev

INTEGER , INTENT(in) :: klevp1

INTEGER , INTENT(in) :: ktrac

INTEGER , INTENT(in) :: krow

INTEGER , INTENT(in) :: itrpwmo (kbdim)

INTEGER , INTENT(in) :: itrpwmop1(kbdim)

REAL(dp), INTENT(in) :: paphm1 (kbdim ,klev +1)

REAL(dp), INTENT(in) :: papm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: paphp1 (kbdim ,klev +1)

REAL(dp), INTENT(in) :: papp1 (kbdim ,klev)

REAL(dp), INTENT(in) :: ptm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: ptte (kbdim ,klev)

REAL(dp), INTENT(in) :: ptsurf (kbdim)

REAL(dp), INTENT(in) :: pqm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pqte (kbdim ,klev)

REAL(dp), INTENT(in) :: pxlm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pxlte (kbdim ,klev)

REAL(dp), INTENT(in) :: pxim1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pxite (kbdim ,klev)

REAL(dp), INTENT(in) :: paclc (kbdim ,klev)

REAL(dp), INTENT(in) :: ppbl (kbdim)

REAL(dp), INTENT(inout) :: pxtm1 (kbdim ,klev ,ktrac)

REAL(dp), INTENT(inout) :: pxtte (kbdim ,klev ,ktrac)

LOGICAL , INTENT(in) :: loland (kbdim)

LOGICAL , INTENT(in) :: loglac (kbdim)

Table 3.9: Parameter list of arguments passed to physc subm 2

name type intent description
kproma integer in actual length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

table continued on next page

100 CHAPTER 3. TECHNICAL DOCUMENTATION

Table 3.9: Parameters of physc subm 2 — continued

kbdim integer in maximum length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
klevp1 integer in number of layers plus one
ktrac integer in number of tracers
krow integer in index number of block of geographical

longitudes
itrpwmo(kbdim) integer in index of model level at which meteoro-

logical tropopause was detected at time
t

itrpwmop1(kbdim) integer in index of model level at which meteoro-
logical tropopause was detected plus 1
at time t

paphm1(kbdim,klevp1) double prec. in pressure of dry air at interfaces between
model layers at time step t−∆t

papm1(kbdim,klev) double prec. in pressure of dry air at center of model
layers at time step t−∆t

paphp1(kbdim,klevp1) double prec. in pressure of dry air at interfaces between
model layers at prognostic time step t+
∆t

papp1(kbdim,klev) double prec. in pressure of dry air at center of model
layers at time step t+ ∆t

ptm1(kbdim,klev) double prec. in temperature at center of model layers
at time step t−∆t

ptte(kbdim,klev) double prec. in temperature tendency at center of
model layers accumulated over all pro-
cesses of actual time step until call of
this subroutine

ptsurf(kbdim) double prec. in surface temperature at time step t
pqm1(kbdim,klev) double prec. in specific humidity (with respect to dry

air) at center of model layers at time
step t−∆t

pqte(kbdim,klev) double prec. in tendency of specific humidity (with re-
spect to dry air) at center of model lay-
ers accumulated over all processes of
actual time step until call of this sub-
routine

pxlm1 double prec. in cloud liquid water content at center of
model layers at time step t−∆t

pxlte double prec. in cloud liquid water tendency at center of
model layers accumulated over all pro-
cesses of actual time step until call of
this subroutine

table continued on next page

3.4. SUBMODEL INTERFACE 101

Table 3.9: Parameters of physc subm 2 — continued

pxim1 double prec. in cloud water ice content at center of
model layers at time step t−∆t

pxite double prec. in cloud water ice tendency at center of
model layers accumulated over all pro-
cesses of actual time step until call of
this subroutine

pxtm1(kbdim,klev,ktrac) double prec. inout tracer mass or molar mixing ratio with
respect to dry air at center of model
layers at time step t−∆t

pxtte(kbdim,klev,ktrac) double prec. inout tendency of tracer mass or molar mix-
ing ratio with respect to dry air at cen-
ter of model layers accumulated over all
processes of actual time step until call
of this subroutine

paclc(kbdim,klev) double prec. in cloud fraction at center of model layers
at time step t

ppbl(kbdim) double prec. in model layer index of geometrically
highest model layer of planetary
boundary layer converted to a real
number at time t

loland(kbdim) double prec. in logical land mask including glaciers
loglac(kbdim) double prec. in logical glacier mask

3.4.2.10 Interface of cuflx subm

Listing 3.20: cuflx subm

SUBROUTINE cuflx_subm(kbdim , kproma , klev , ktop , krow , &

pxtenh , pxtu , prhou , &

pmfu , pmfuxt , &

pmlwc , pmiwc , pmratepr ,pmrateps , &

pfrain , pfsnow , pfevapr , pfsubls , &

paclc , pmsnowacl , &

ptu , pdpg , &

pxtte)

INTEGER , INTENT(in) :: kbdim , kproma , klev , ktop , &

krow

REAL(dp), INTENT(in) :: pdpg(kbdim ,klev), &

pmratepr(kbdim ,klev), &

pmrateps(kbdim ,klev), &

pmsnowacl(kbdim ,klev), &

ptu(kbdim ,klev), &

pfrain(kbdim ,klev), &

pfsnow(kbdim ,klev), &

pfevapr(kbdim ,klev), &

pfsubls(kbdim ,klev), &

pmfu(kbdim ,klev), &

102 CHAPTER 3. TECHNICAL DOCUMENTATION

paclc(kbdim ,klev), &

prhou(kbdim ,klev)

REAL(dp), INTENT(inout) :: pxtte(kbdim ,klev ,ntrac), &

pmlwc(kbdim ,klev), &

pmiwc(kbdim ,klev), &

pxtenh(kbdim ,klev ,ntrac), &

pxtu(kbdim ,klev ,ntrac), &

pmfuxt(kbdim ,klev ,ntrac)

Table 3.10: Parameter list of arguments passed to cuflx subm

name type intent description
kbdim integer in maximum length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

kproma integer in actual length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
ktop integer in Could be the minimum model layer in-

dex of cloud top layers over one block.
In fact, it is set to 1 in cuflx

pxtenh(kbdim,klev,ntrac) double prec. inout tracer mass or molar mixing ratio with
respect to dry air at center of model
layers at time step t+ ∆t

pxtu(kbdim,klev,ntrac) double prec. inout tracer mass mixing ratio with respect
to cloud water at center of model layers
in the liquid or solid cloud water phase
at time step t+ ∆t

prhou(kbdim,klev) double prec. in dry air density at center of model layers
at time step t+ ∆t

pmfu(kbdim,klev) double prec. in convective air mass flux at center of
model layers at time t

pmfuxt(kbdim,klev,ntrac) double prec. inout net tracer mass flux due to convective
transport and wet deposition at center
of model layers at time step t + ∆t on
exit (in mass mixing ratio per time)

pmlwc(kbdim,klev) double prec. inout liquid water content (mass of liquid wa-
ter per mass of dry air) at center of
model layers at time t+ ∆t on exit

pmiwc(kbdim,klev) double prec. inout ice water content (mass of water ice per
mass of dry air) at center of model lay-
ers at time t+ ∆t on exit

table continued on next page

3.4. SUBMODEL INTERFACE 103

Table 3.10: Parameters of cuflx subm — continued

pmratepr(kbdim,klev) double prec. in rain formation rate in mass water per
mass dry air converted to rain at center
of model layers at time step t

pmrateps(kbdim,klev) double prec. in ice formation rate in mass water per
mass dry air converted to snow at cen-
ter of model layers at time step t

pfrain(kbdim,klev) double prec. in rain flux at centers of model layers per
grid box area at time t, evaporation not
taken into account

pfsnow(kbdim,klev) double prec. in snow flux at centers of model layers per
grid box area at time t, evaporation not
taken into account

pfevapr(kbdim,klev) double prec. in evaporation of rain at centers of model
layers per grid box area at time t

pfsubls(kbdim,klev) double prec. in sublimation of snow at centers of model
layers per grid box area at time t

paclc(kbdim,klev) double prec. in cloud cover at center of model layer at
time step t

pmsnowaclc(kbdim,klev) double prec. in accretion rate of snow at center of
model layer at time step t

ptu(kbdim,klev) double prec. in temperature at center of model layer at
time step t−∆t

pdpg(kbdim,klev) double prec. in geopotential height at center of model
level

pxtte(kbdim,klev,ktrac) double prec. inout tendency of tracer mass or molar mix-
ing ratio with respect to dry air at cen-
ter of model layers accumulated over all
processes of actual time step until call
of this subroutine

3.4.2.11 Interface of cloud subm

Listing 3.21: cloud subm

SUBROUTINE cloud_subm(&

kproma , kbdim , klev , ktop , &

krow , &

pmlwc , pmiwc , pmratepr , pmrateps , &

pfrain , pfsnow , pfevapr , pfsubls , &

pmsnowacl , paclc , ptm1 , ptte , &

pxtm1 , pxtte , paphp1 , papp1 , &

prhop1 , pclcpre)

INTEGER , INTENT(in) :: kproma

INTEGER , INTENT(in) :: kbdim

INTEGER , INTENT(in) :: klev

INTEGER , INTENT(in) :: ktop

104 CHAPTER 3. TECHNICAL DOCUMENTATION

INTEGER , INTENT(in) :: krow

REAL(dp), INTENT(in) :: pclcpre (kbdim ,klev)

REAL(dp), INTENT(in) :: pfrain (kbdim ,klev)

REAL(dp), INTENT(in) :: pfsnow (kbdim ,klev)

REAL(dp), INTENT(in) :: pfevapr (kbdim ,klev)

REAL(dp), INTENT(in) :: pfsubls (kbdim ,klev)

REAL(dp), INTENT(in) :: pmsnowacl(kbdim ,klev)

REAL(dp), INTENT(in) :: ptm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: ptte (kbdim ,klev)

REAL(dp), INTENT(in) :: prhop1 (kbdim ,klev)

REAL(dp), INTENT(in) :: papp1 (kbdim ,klev)

REAL(dp), INTENT(in) :: paphp1 (kbdim ,klev +1)

REAL(dp), INTENT(inout) :: paclc (kbdim ,klev)

REAL(dp), INTENT(inout) :: pmlwc (kbdim ,klev)

REAL(dp), INTENT(inout) :: pmiwc (kbdim ,klev)

REAL(dp), INTENT(inout) :: pmratepr (kbdim ,klev)

REAL(dp), INTENT(inout) :: pmrateps (kbdim ,klev)

REAL(dp), INTENT(in) :: pxtm1 (kbdim ,klev ,ntrac)

REAL(dp), INTENT(inout) :: pxtte (kbdim ,klev ,ntrac)

Table 3.11: Parameter list of arguments passed to cloud subm

name type intent description
kproma integer in actual length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

kbdim integer in maximum length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
ktop integer in Could be the minimum model layer in-

dex of cloud top layers over one block.
In fact, it is set to 1 in cuflx

krow integer in index number of block of geographical
longitudes

pmlwc(kbdim,klev) double prec. inout liquid water content (mass of liquid wa-
ter per mass of dry air) at center of
model layers at time t+ ∆t on exit

pmiwc(kbdim,klev) double prec. inout ice water content (mass of water ice per
mass of dry air) at center of model lay-
ers at time t+ ∆t on exit

pmratepr(kbdim,klev) double prec. inout rain formation rate in mass water per
mass dry air converted to rain at center
of model layers at time step t

table continued on next page

3.4. SUBMODEL INTERFACE 105

Table 3.11: Parameters of cloud subm — continued

pmrateps(kbdim,klev) double prec. inout ice formation rate in mass water per
mass dry air converted to snow at cen-
ter of model layers at time step t

pfrain(kbdim,klev) double prec. in rain flux at centers of model layers per
grid box area at time t, evaporation not
taken into account

pfsnow(kbdim,klev) double prec. in snow flux at centers of model layers per
grid box area at time t, evaporation not
taken into account

pfevapr(kbdim,klev) double prec. in evaporation of rain at centers of model
layers per grid box area at time t

pfsubls(kbdim,klev) double prec. in sublimation of snow at centers of model
layers per grid box area at time t

pmsnowaclc(kbdim,klev) double prec. in accretion rate of snow at center of
model layer at time step t

paclc(kbdim,klev) double prec. inout cloud cover at center of model layer at
time step t

ptm1(kbdim,klev) double prec. in temperature at center of model layers
at time step t−∆t

ptte(kbdim,klev) double prec. in temperature tendency at center of
model layers accumulated over all pro-
cesses of actual time step until call of
this subroutine

pxtm1(kbdim,klev,ntrac) double prec. in tracer mass or molar mixing ratio with
respect to dry air at center of model
layers at time step t−∆t

pxtte(kbdim,klev,ntrac) double prec. inout tendency of tracer mass or molar mix-
ing ratio with respect to dry air at cen-
ter of model layers accumulated over all
processes of actual time step until call
of this subroutine

paphp1(kbdim,klev+1) double prec. in pressure of dry air at interfaces between
model layers at prognostic time step t+
∆t

papp1(kbdim,klev) double prec. in pressure of dry air at center of model
layers at time step t+ ∆t

prhop1(kbdim,klev) double prec. in dry air density at center of model layers
at time step t+ ∆t

pclcpre(kbdim,klev) double prec. in fraction of grid box covered by precipi-
tation at time step t

3.4.2.12 Interface of physc subm 3

Listing 3.22: physc subm 3

SUBROUTINE physc_subm_3 &

(kproma , kbdim , klev , klevp1 , ktrac , krow , &

106 CHAPTER 3. TECHNICAL DOCUMENTATION

paphm1 , papm1 , paphp1 , papp1 , &

ptm1 , ptte , ptsurf , &

pqm1 , pqte , &

pxlm1 , pxlte , pxim1 , pxite , &

pxtm1 , pxtte , &

pgeom1 , pgeohm1 , &

paclc , &

ppbl , pvervel , &

loland , loglac)

INTEGER , INTENT(in) :: kproma

INTEGER , INTENT(in) :: kbdim

INTEGER , INTENT(in) :: klev

INTEGER , INTENT(in) :: klevp1

INTEGER , INTENT(in) :: ktrac

INTEGER , INTENT(in) :: krow

REAL(dp), INTENT(in) :: paphm1 (kbdim ,klevp1)

REAL(dp), INTENT(in) :: papm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: paphp1 (kbdim ,klevp1)

REAL(dp), INTENT(in) :: papp1 (kbdim ,klev)

REAL(dp), INTENT(in) :: ptm1 (kbdim ,klev)

REAL(dp), INTENT(inout) :: ptte (kbdim ,klev)

REAL(dp), INTENT(in) :: ptsurf (kbdim)

REAL(dp), INTENT(in) :: pqm1 (kbdim ,klev)

REAL(dp), INTENT(inout) :: pqte (kbdim ,klev)

REAL(dp), INTENT(in) :: pxlm1 (kbdim ,klev)

REAL(dp), INTENT(inout) :: pxlte (kbdim ,klev)

REAL(dp), INTENT(in) :: pxim1 (kbdim ,klev)

REAL(dp), INTENT(inout) :: pxite (kbdim ,klev)

REAL(dp), INTENT(inout) :: pxtm1 (kbdim ,klev ,ktrac)

REAL(dp), INTENT(inout) :: pxtte (kbdim ,klev ,ktrac)

REAL(dp), INTENT(in) :: pgeom1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pgeohm1 (kbdim ,klevp1)

REAL(dp), INTENT(in) :: paclc (kbdim ,klev)

REAL(dp), INTENT(in) :: ppbl (kbdim)

REAL(dp), INTENT(in) :: pvervel (kbdim ,klev)

LOGICAL , INTENT(in) :: loland (kbdim)

LOGICAL , INTENT(in) :: loglac (kbdim)

Table 3.12: Parameter list of arguments passed to physc subm 3

name type intent description
kproma integer in actual length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

table continued on next page

3.4. SUBMODEL INTERFACE 107

Table 3.12: Parameters of physc subm 3 — continued

kbdim integer in maximum length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
klevp1 integer in number of layers plus one
ktrac integer in number of tracers
krow integer in index number of block of geographical

longitudes
paphm1(kbdim,klevp1) double prec. in pressure of dry air at interfaces between

model layers at time step t−∆t
papm1(kbdim,klev) double prec. in pressure of dry air at center of model

layers at time step t−∆t
paphp1(kbdim,klevp1) double prec. in pressure of dry air at interfaces between

model layers at prognostic time step t+
∆t

papp1(kbdim,klev) double prec. in pressure of dry air at center of model
layers at time step t+ ∆t

ptm1(kbdim,klev) double prec. in temperature at center of model layers
at time step t−∆t

ptte(kbdim,klev) double prec. inout temperature tendency at center of
model layers accumulated over all pro-
cesses of actual time step until call of
this subroutine

ptsurf(kbdim) double prec. in surface temperature at time step t
pqm1(kbdim,klev) double prec. in specific humidity (with respect to dry

air) at center of model layers at time
step t−∆t

pqte(kbdim,klev) double prec. inout tendency of specific humidity (with re-
spect to dry air) at center of model lay-
ers accumulated over all processes of
actual time step until call of this sub-
routine

pxlm1 double prec. in cloud liquid water content (mass of liq-
uid water per mass of dry air) at center
of model layers at time step t−∆t

pxlte double prec. inout cloud liquid water tendency (rate of
change of mass of liquid water per mass
of dry air) at center of model layers ac-
cumulated over all processes of actual
time step until call of this subroutine

pxim1 double prec. in cloud water ice content (mass of wa-
ter ice per mass of dry air) at center of
model layers at time step t−∆t

table continued on next page

108 CHAPTER 3. TECHNICAL DOCUMENTATION

Table 3.12: Parameters of physc subm 3 — continued

pxite double prec. inout cloud water ice tendency (rate of
change of mass of ice water per mass
of dry air) at center of model layers ac-
cumulated over all processes of actual
time step until call of this subroutine

pxtm1(kbdim,klev,ktrac) double prec. inout tracer mass or molar mixing ratio with
respect to dry air at center of model
layers at time step t−∆t

pxtte(kbdim,klev,ktrac) double prec. inout tendency of tracer mass or molar mix-
ing ratio with respect to dry air at cen-
ter of model layers accumulated over all
processes of actual time step until call
of this subroutine

pgeom1(kbdim,klev) double prec. in geopotential at center of model layers
at time step t−∆t

pgeohm1(kbdim,klevp1) double prec. in geopotential at interfaces between
model layers at time step t−∆t

paclc(kbdim,klev) double prec. in cloud cover at center of model layer at
time step t

ppbl(kbdim) double prec. in model layer index of geometrically
highest model layer of planetary
boundary layer converted to a real
number at time t

pvervel(kbdim,klev) double prec. in large scale vertical velocity at model
center at time step t

loland(kbdim) double prec. in logical land mask including glaciers
loglac(kbdim) double prec. in logical glacier mask

3.4.2.13 Interface of physc subm 4

Listing 3.23: physc subm 4

SUBROUTINE physc_subm_4 (kproma , kbdim , klev , &

klevp1 , ktrac , krow , &

paphm1 , pfrl , pfrw , &

pfri , loland , pxtm1 , &

pxtte)

INTEGER , INTENT(in) :: kproma , kbdim , klev , klevp1 , ktrac ,

krow

REAL(dp), INTENT(in) :: paphm1(kbdim ,klevp1), &

pfrl(kproma), &

pfrw(kproma), &

pfri(kproma), &

pxtm1(kbdim ,klev ,ktrac)

REAL(dp), INTENT(inout):: pxtte(kbdim ,klev ,ktrac)

LOGICAL , INTENT(in) :: loland(kproma)

3.4. SUBMODEL INTERFACE 109

Table 3.13: Parameter list of arguments passed to physc subm 4

name type intent description
kproma integer in actual length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

kbdim integer in maximum length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
klevp1 integer in number of layers plus one
ktrac integer in number of tracers
krow integer in index number of block of geographical

longitudes
paphm1(kbdim,klevp1) double prec. in pressure of dry air at interfaces between

model layers at time step t−∆t
pfrl(kbdim) double prec. in land fraction
pfrw(kbdim) double prec. in surface water fraction
pfri(kbdim) double prec. in surface ice fraction
loland(kbdim) double prec. in logical land mask including glaciers
pxtm1(kbdim,klev,ktrac) double prec. in tracer mass or molar mixing ratio with

respect to dry air at center of model
layers at time step t−∆t

pxtte(kbdim,klev,ktrac) double prec. inout tendency of tracer mass or molar mix-
ing ratio with respect to dry air at cen-
ter of model layers accumulated over all
processes of actual time step until call
of this subroutine

3.4.2.14 Interface of free subm memory

Listing 3.24: free subm memory

SUBROUTINE free_subm_memory

This subroutine has no parameter list.

3.4.3 Tracer interface

Tracer fields are constituents transported with the flow of air in the atmospheric model. In
addition to the transport, they are subject to several processes such as convection, diffusion,
emission, deposition and chemical conversion. Horizontal and vertical transport is carried out
by the atmospheric model and some standard processes can be performed by the atmospheric
model as well. Other processes which are specific for the tracer must be calculated by the
sub–model. The tracer interface is a collection of subroutines that allow the definition and
handling of a data structure containing information about tracers. This information comprises
the 3–dimensional mass or volume mixing ratio of the tracers but also variables that determine
the transport and physical properties of each individual tracer.

110 CHAPTER 3. TECHNICAL DOCUMENTATION

Tracers within ECHAM6 are represented by a 4–dimensional array (the three spatial dimensions
are supplemented by the tracer index) but pointers to individual tracers can be obtained so
that details of implementation of the data structure remains hidden. A one dimensional array
of a derived data type holds the meta–information. In the restart file the tracers are identified
by name, so that restarts can be continued with different sets of tracers if required. Reading
and writing of the tracers to the rerun file and to the output stream is based on the output
stream and memory buffer facilities described in section 3.2.

3.4.3.1 Request a new tracer

A new tracer with name ’A’ is requested from a module with name ’my module’ by a call to
the routine new tracer of mo tracer.f90:

call new tracer (’A’, ’my module’, idx)

Tracer properties are specified by optional arguments of the new tracer subroutine. The
interface is as follows:

3.4. SUBMODEL INTERFACE 111

SUBROUTINE new tracer name, modulename [,spid] [,subname] [,trtype]
[,idx] [,nwrite] [,longname] [,units]
[,moleweight] [,code] [,table] [,bits] [,nbudget]
[,burdenid] [,ninit] [,vini] [,nrerun] [,nint]
[,ntran] [,nfixtyp] [,nvdiff] [,nconv] [,nwetdep]
[,ndrydep] [,nsedi] [,nemis] [,tdecay] [,nphase]
[,nsoluble] [,mode] [,myflag] [,ierr])

name type intent default function∗ description
identification of the tracer :
name character(len=*) in es name of the tracer
modulename character(len=*) in es name of the module request-

ing the tracer
[spid] integer in es species index
[subname] character(len=*) in es optional for ’colored’ tracers
[trtype] integer in es tracer type
[idx] integer out es index of the tracer
postprocessing output :
[nwrite] integer in ON p flag to print the tracer
[longname] character(len=*) in ” ” p long name
[units] character(len=*) in ” ” p physical units
[moleweight] real in 0. p molecular weight
[code] integer in 0 p GRIB code
[table] integer in 131 p GRIB table
[bits] integer in 16 p number of GRIB encoding

bits
[nbudget] integer in OFF ep% budget flag
[burdenid] integer in e% burden diagnostics number
initialization and rerun :
[ninit] integer in RESTART+ e initialization flag

CONSTANT
[vini] real in 0. e initialization value
[nrerun] integer in ON e restart flag
transport and other processes :
[nint] integer in e integration flag
[ntran] integer in TRANSPORT e% transport switch
[nfixtyp] integer in 1 e% type of mass fixer
[nvdiff] integer in ON e vertical diffusion flag
[nconv] integer in ON e convection flag
[nwetdep] integer in OFF e wet deposition flag
[ndrydep] integer in OFF e% dry deposition flag
[nsedi] integer in OFF e% sedimentation flag
[nemis] integer in OFF e% surface emission flag
[tdecay] real in 0. e exponential decay time
attributes interpreted by the submodel :
[nphase] integer in 0 s phase indicator
[nsoluble] integer in s solubility flag
[mode] integer in 0 s mode indicator
[myflag(:)] type(t flag) in (”,0.) s user defined flags
miscellaneous arguments :
[ierr] integer out OK=0 s error return value
∗ attributes interpreted by ECHAM (e), by the submodel (s), by the postprocessing module
(p), not yet implemented (%).

112 CHAPTER 3. TECHNICAL DOCUMENTATION

In general, integer values are chosen to represent the flags in order to allow different choices:
0: OFF
1: ON, standard action
2: ..., alternative action
. . .
tag: specific action performed by the sub-model.

Small numbers indicate that some kind of standard action shall be performed by ECHAM.
Higher tag values indicate that the process will be handled by the submodel. For the following
actual arguments, valid values are defined by parameter statements (see mo tracdef.f90):
argument values description

OK, OFF, ON universal values
ntran NO ADVECTION, SEMI LAGRANGIAN, SPITFIRE, TPCORE transport flag
ninit INITIAL, RESTART, CONSTANT, PERIODIC initialization flag
nsoluble SOLUBLE, INSOLUBLE soluble flag
nphase GAS, AEROSOL, GAS OR AEROSOL, AEROSOLMASS,

AEROSOLNUMBER, UNDEFINED
phase indicator

code AUTO automatically chose
unique GRIB code

ierr OK,NAME USED,NAME MISS,TABLE FULL error return value (can-
not be used currently)

Tracer properties: Identification of the tracer and sub-model. Each tracer is identi-
fied by a unique name and optionally by a subname in case of colored tracers. In the postpro-
cessing file colored tracers appear with the name name subname. Values of optional arguments
provided for the corresponding non–colored tracer (without argument subname) are used for
the colored tracer as well (despite the GRIB code number).
The sub–model identifies itself by a unique character string modulename. idx is the index of
the new tracer in the global arrays XT, XTM1, trlist.

Tracer properties: Postprocessing flags. The flag nwrite (default ON) determines,
whether the tracer is written to the standard output stream. A separate file with name
STANDARDFILENAME tracer for GRIB, or STANDARDFILENAME tracer.nc for NetCDF format, is
written. The default file format GRIB can be changed to NetCDF by setting trac filetype=2

in the namelist runctl (see Tab. 2.12 of section 2.2.1.14).
If present, the attributes longname, units and moleweight are written to the NetCDF file.
Within GRIB files, fields are identified by a GRIB code number which must be given as
argument code. Note that codes 129 and 152 should not be used because they are at-
tributed to surface pressure and geopotential height. A predefined value AUTO is accepted
indicating automatic generation of unique GRIB code numbers. For GRIB files, a code file
STANDARDFILENAME tracer.codes is written to associate code numbers with tracer names.
For the tracers, a default GRIB table number 131 is chosen for tracer output. By default, 16
bits are used for encoding in GRIB format.

Tracer properties: Initialization and rerun. The nrerun flag (default=ON) indicates,
whether the tracer variable shall be read and written from/to the rerun file. The tracers are
identified by name in the rerun (NetCDF) file, so that they can be read selectively. The
initialization flag ninit is used to specify the initialization procedure in more detail: Valid
values are one of INITIAL (read from initial file, this must be done by the submodel), RESTART

3.4. SUBMODEL INTERFACE 113

(read from restart file), CONSTANT (set to the initial value vini) or a combination (e.g.
RESTART+CONSTANT) to indicate that the quantity is read from the restart file in case of
a rerun but set to a predefined value otherwise.

Tracer properties: Transport and other processes. Tracer transport and the impact
of certain other processes is calculated by ECHAM. The flags nint, ntran, nfixtyp, nvdiff,
nconv, nwetdep, nsedi, ndrydep, nemis, tdecay are meant to switch ON or OFF the respective
processes (not fully implemented currently).
A value of tdecay6= 0 leads to an exponential decay of the tracer with time.

Tracer properties: Attributes interpreted by the submodel. The following flags are
not used by ECHAM. They are reserved to be used by the sub-models: nphase, nsoluble,
mode and myflag. myflag is an array of pairs of character strings and real values.

3.4.3.2 Access to tracers with get tracer

The routine get tracer returns the references to tracers already defined.

Example:

Listing 3.25: get tracer

CALL get_tracer (’SO2 ’,idx=index ,modulename=modulename)

IF (ierr ==0) THEN

PRINT *, ’Using tracer SO2 from module ’,modulename

ELSE

! eg. read constant tracer field

...

ENDIF

The interface of subroutine get tracer is:
SUBROUTINE get tracer (name [,subname] [,modulename] [,idx] [,pxt]

[,pxtm1] [,ierr])
name type intent description
name character(len=*) in name of the tracer
[subname] character(len=*) in subname of the tracer
[modulename] character(len=*) out name of requesting module
[idx] integer out index of the tracer
[pxt(:,:,:)] real pointer pointer to the tracer field
[pxtm1(:,:,:)] real pointer pointer to the tracer field at previ-

ous time step
[ierr] integer out error return value (0=OK, 1=tracer

not defined)
If the optional parameter ierr is not given and the tracer is not defined the program will
abort. Note that references (pxt, pxtm1) to the allocated memory cannot be obtained before
all tracers are defined and the respective memory is allocated in the last step of tracer definition.

3.4.3.3 Tracer list data type

Summary information on the tracers is stored in a global variable trlist. Attributes of individ-
ual tracers are stored in the component array trlist% ti(:). The definitions of the respective

114 CHAPTER 3. TECHNICAL DOCUMENTATION

data types t trlist and t trinfo are given below:

Listing 3.26: t trlist

!

! Basic data type definition for tracer info list

!

TYPE t_trlist

!

! global tracer list information

!

INTEGER :: ntrac ! number of tracers specified

INTEGER :: anyfixtyp ! mass fixer types used

INTEGER :: anywetdep ! wet deposition requested

! for any tracer

INTEGER :: anydrydep ! wet deposition requested

! for any tracer

INTEGER :: anysedi ! sedimentation requested

! for any tracer

INTEGER :: anysemis ! surface emission flag

! for any tracer

INTEGER :: anyconv ! convection flag

INTEGER :: anyvdiff ! vertical diffusion flag

INTEGER :: anyconvmassfix !

INTEGER :: nadvec ! number of advected tracers

LOGICAL :: oldrestart ! true to read old restart

format

!

! individual information for each tracer

!

TYPE (t_trinfo) :: ti (jptrac) ! Individual settings

!for each tracer

!

! reference to memory buffer info

!

TYPE (t_p_mi) :: mi (jptrac) ! memory buffer information

!for each tracer

TYPE (memory_info), POINTER :: mixt ! memory buffer

! information for XT

TYPE (memory_info), POINTER :: mixtm1 ! memory buffer

! information for XTM1

END TYPE t_trlist

The component ntrac gives the total number of tracers handled by the model. The components
any... are derived by a bitwise OR of the corresponding individual tracer flags. Individual flags
are stored in component ti of type t trinfo. They reflect the values of the arguments passed
to subroutine new tracer.

Listing 3.27: t trinfo

TYPE t_trinfo

3.4. SUBMODEL INTERFACE 115

!

! identification of transported quantity

!

CHARACTER(len=ln) :: basename ! name (instead of xt..)

CHARACTER(len=ln) :: subname ! optional for

!’colored ’ tracer

CHARACTER(len=ln) :: fullname ! name_subname

CHARACTER(len=ln) :: modulename ! name of requesting

! sub-model

CHARACTER(len=ln) :: units ! units

CHARACTER(len=ll) :: longname ! long name

CHARACTER(len=ll) :: standardname ! CF standard name

INTEGER :: trtype ! type of tracer:

! 0=undef., 1=prescribed ,

! 2=diagnostic (no transport),

! 3=prognostic (transported)

INTEGER :: spid ! species id (index in

! speclist) where physical/chem.

! properties are defined

INTEGER :: nphase ! phase (1=GAS, 2=AEROSOLMASS ,

! 3=AEROSOLNUMBER ,...)

INTEGER :: mode ! aerosol mode or bin number

REAL(dp) :: moleweight ! molecular mass (copied

! from species upon initialisation)

! Requested resources ...

!

INTEGER :: burdenid ! index in burden diagnostics

!

! Requested resources ...

!

INTEGER :: nbudget ! calculate budgets (default 0)

INTEGER :: ntran ! perform transport (default 1)

INTEGER :: nfixtyp ! type of mass fixer (default 1)

INTEGER :: nconvmassfix ! use xt_conv_massfix in cumastr

INTEGER :: nvdiff ! vertical diffusion flag

! (default 1)

INTEGER :: nconv ! convection flag (default 1)

INTEGER :: ndrydep ! dry deposition flag:

! 0=no drydep ,

! 1=prescribed vd,

! 2=Ganzeveld

INTEGER :: nwetdep ! wet deposition flag (default 0)

INTEGER :: nsedi ! sedimentation flag (default 0)

REAL :: tdecay ! decay time (exponential)

! (default 0.sec)

INTEGER :: nemis ! surface emission flag (default 0)

!

! initialization and restart

116 CHAPTER 3. TECHNICAL DOCUMENTATION

!

INTEGER :: ninit ! initialization request flag

INTEGER :: nrerun ! rerun flag

REAL :: vini ! initialization value (default 0.)

INTEGER :: init ! initialisation method actually used

!

! Flags used for postprocessing

!

INTEGER :: nwrite ! write flag (default 1)

INTEGER :: code ! tracer code (default 235...)

INTEGER :: table ! tracer code table (default 0)

INTEGER :: gribbits ! bits for encoding (default 16)

INTEGER :: nint ! integration (accumulation)

! flag (default 1)

!

! Flags to be used by chemistry or tracer modules

!

INTEGER :: nsoluble ! soluble flag (default 0)

TYPE(t_flag) :: myflag (nf)! user defined flag

type(time_days) :: tupdatel ! last update time

type(time_days) :: tupdaten ! next update time

!

END TYPE t_trinfo

The data type t flag is defined as follows:

Listing 3.28: data type t flag

TYPE t_flag

CHARACTER(len=lf) :: c ! character string

REAL :: v ! value

END TYPE t_flag

The lengths of the character string components are:

Listing 3.29: Length of strings

INTEGER , PARAMETER :: ln = 24 ! length of name

! (char) components

INTEGER , PARAMETER :: ll = 256 ! length of

! longname component

INTEGER , PARAMETER :: lf = 8 ! length of flag

! character string

INTEGER , PARAMETER :: nf = 10 ! number of user

! defined flags

INTEGER , PARAMETER :: ns = 20 ! max number of submodels

	Introduction
	User guide
	Compiling mpggreenECHAM6black
	Input namelists
	Input namelists in file namelist.echam
	Namelist cfdiagctl
	Namelist co2ctl
	Namelist columnctl
	Namelist debugsctl
	Namelist dynctl
	Namelist gwsctl
	Namelist hratesctl
	Namelist mvstreamctl
	Namelist ndgctl
	Namelist nmictl
	Namelist parctl
	Namelist physctl
	Namelist radctl
	Namelist runctl
	Namelist submdiagctl
	Namelist submodelctl
	Namelist tdiagctl

	Input namelists in file namelist.jsbach
	Namelist albedo_ctl
	Namelist bethy_ctl
	Namelist cbalance_ctl
	Namelist climbuf_ctl
	Namelist dynveg_ctl
	Namelist jsbach_ctl
	Namelist soil_ctl
	Input namelists in other files
	Namelist mvctl

	Input data
	Output files and variables
	Output file echam
	Output file forcing
	Output file tdiag

	Run scripts
	Systematic technical testing of mpggreenECHAM6black
	System requirements
	Description of the scripts
	Usage

	Automatic generation of runscripts for mpggreenECHAM6black on blizzard
	Directory structure and file systems on blizzard.dkrz.de
	Generation of run scripts

	Postprocessing
	Software requirements
	Preparation of the mpggreenECHAM6black output data
	Generation of plots and tables

	Technical Documentation
	Parallelization
	General description
	Recipe for writing or modifying parallel routines
	Physical parameterizations
	Input/Output

	Decomposition (mo_decompose)
	Information on the whole model domain
	Information valid for all processes of a model instance
	General Local Information
	Grid space decomposition
	Fourier space decomposition
	Legendre space decomposition
	Spectral space decomposition

	Gather, Scatter and Low Level Transposition Routines (mo_transpose)
	Gather and Scatter routines (gather_xx, scatter_xx)
	Transposition routines (tr_xx_yy)

	High Level Transposition Routines (mo_call_trans)
	Global operations (mo_global_op)

	Data structures and memory use
	Output Streams and Memory Buffer
	Functionality
	Usage
	Create an output stream
	Add a field to the output stream
	Change of default values for optional arguments
	Access to stream elements
	Doubling of stream element entries
	Definition of new dimensions

	Date and time variables
	Date--time variables in mpggreenECHAM6black
	Usage of DT--variables
	Information about actual date and time in mpggreenECHAM6black.
	Variables describing repeated events.

	Submodel interface
	Introduction
	Submodel Interface
	Interface of init_subm
	Interface of init_subm_memory
	Interface of stepon_subm
	Interface of physc_subm_1
	Interface of radiation_subm_1
	Interface of radiation_subm_2
	Interface of vdiff_subm
	Interface of rad_heat_subm
	Interface of physc_subm_2
	Interface of cuflx_subm
	Interface of cloud_subm
	Interface of physc_subm_3
	Interface of physc_subm_4
	Interface of free_subm_memory

	Tracer interface
	Request a new tracer
	Access to tracers with get_tracer
	Tracer list data type

