User manual for ECHAM6

Sebastian Rast¹, Renate Brokopf, Monika Esch, Veronika Gayler, Ingo Kirchner, Luis Kornblüh, Andreas Rhodin, Uwe Schulzweida

February 22, 2012, (2012.02-22), version echam-6.1.00-guide-2.0

¹Max Planck Institute of Meteorology, Hamburg, e-mail: sebastian.rast@zmaw.de

Contents

1	Intr	oducti	on	1
2	Use	r guide	e	3
	2.1	Compi	iling ЕСНАМ6	3
	2.2	Input	namelists	3
		2.2.1	Input namelists in file namelist.echam	3
			2.2.1.1 Namelist cfdiagctl	5
			2.2.1.2 Namelist co2ct1	6
			2.2.1.3 Namelist columnct1	6
			2.2.1.4 Namelist debugsctl	6
			2.2.1.5 Namelist dynctl	7
			2.2.1.6 Namelist gwsctl	9
			2.2.1.7 Namelist hratesctl	11
			2.2.1.8 Namelist mvstreamctl	12
			2.2.1.9 Namelist ndgctl	12
			2.2.1.10 Namelist nmictl	16
			2.2.1.11 Namelist parct1	16
			2.2.1.12 Namelist physctl	17
			2.2.1.13 Namelist radctl	18
			2.2.1.14 Namelist runctl	22
			2.2.1.15 Namelist submdiagctl	26
			2.2.1.16 Namelist submodelctl	29
			2.2.1.17 Namelist tdiagctl	31
		2.2.2	Input namelists in file namelist.jsbach	32
		2.2.3	Namelist albedo_ctl	33
		2.2.4	Namelist bethy_ctl	33
		2.2.5	Namelist cbalance_ctl	33
		2.2.6	Namelist climbuf_ctl	34
		2.2.7	Namelist dynveg_ctl	34
		2.2.8	Namelist jsbach_ctl	35
		2.2.9	Namelist soil_ctl	36
		2.2.10	Input namelists in other files	37
			2.2.10.1 Namelist mvctl	37
	2.3	Input	data	38
	2.4	Outpu	t files and variables \ldots \ldots \ldots \ldots \ldots	43
		2.4.1	Output file echam	44
		2.4.2	Output file forcing	49
		2.4.3	Output file tdiag	50

	2.5	Run s	cripts		52
		2.5.1	Systemati	c technical testing of ECHAM6	52
			2.5.1.1	System requirements	54
			2.5.1.2 l	Description of the scripts	54
			2.5.1.3 U	Jsage	55
		2.5.2	Automatic	c generation of runscripts for ECHAM6 on blizzard	57
			2.5.2.1 l	Directory structure and file systems on blizzard.dkrz.de	57
			2.5.2.2	Generation of run scripts	57
	2.6	Postp	rocessing .		58
			2.6.0.3	Software requirements	58
			2.6.0.4 l	Preparation of the ECHAM6 output data	58
			2.6.0.5	Generation of plots and tables	59
9	Tee	hnicol	Dogumon	tation	29
0	3.1	nnicai Parall	elization		53 63
	0.1	211	General d	escription	63 63
		312	Recipe for	writing or modifying parallel routines	64
		0.1.2	3191 I	Physical parameterizations	64 67
			3.1.2.1 1 3.1.2.1 1	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	65
		212	Decompos	ition (mo decompose)	67
		0.1.0	3131 I	information on the whole model domain	68
			3139 I	information on the whole model domain	60 60
			3133 (General Local Information	69 69
			3.1.0.0	Grid space decomposition	60 60
			3.1.3.4 ($3.1.3.4$]	Fourier space decomposition	$\frac{59}{70}$
			3136	organdra space decomposition	$\frac{70}{70}$
			3.1.3.0 1 3.1.3.7 (Spectral space decomposition	70 71
		31/	Cathor S	cattor and Low Lovel Transposition Routines (mo transpose)	71 71
		0.1.4	31/11 (Catter and Low Level Transposition Routines (mo_transpose)	71 71
			3.1.4.1 ($3.1.4.1$ ($\frac{1}{2} \frac{1}{2} \frac{1}$	71 73
		215	High Love	Transposition Poutines (m_xx_yy)	73 74
		3.1.0 3.1.6	Clobal on	$(m_1, m_2, m_3, m_3, m_3, m_3, m_3, m_3, m_3, m_3$	74 76
	29	Data (Giobal up	nd momory uso	$\frac{70}{77}$
	0.2	2 2 1	Output St	reams and Memory Buffer	11 77
		0.2.1		Functionality	11 77
			3.2.1.1 1 3.2.1.2 1		11 77
			3.2.1.2 (Preste an output stream	78
			3.2.1.0 (3.2.1.1)	Add a field to the output stream	70 70
			3.2.1.4 1 3.2.1.5 (Thenge of default values for optional arguments	19 89
			3.2.1.0 (Access to stream elements	52 89
			3.2.1.0 1 3.2.1.7 1	Oubling of stream elements	52 83
			3.2.1.7	Definition of now dimensions	23 29
	33	Date	and time ve	riables	50 84
	0.0	331	Date_time	variables in FCHAM6	54 8/1
		332	Usage of I	T-variables	9 4 85
		333	Informatic	on about actual date and time in ECHAM6	50 86
		3.3.4	Variahlee	describing repeated events	30 87
	34	Subm	odel interfa		21 87
	J. I	Subm	caor mound	··· · · · · · · · · · · · · · · · · ·	\sim

CONTENTS

3.4.1	Introduc	etion
3.4.2	Submod	el Interface
	3.4.2.1	Interface of init_subm
	3.4.2.2	Interface of init_subm_memory
	3.4.2.3	Interface of stepon_subm
	3.4.2.4	Interface of physc_subm_1 90
	3.4.2.5	Interface of radiation_subm_1
	3.4.2.6	Interface of radiation_subm_2
	3.4.2.7	Interface of vdiff_subm
	3.4.2.8	Interface of rad_heat_subm
	3.4.2.9	Interface of physc_subm_2 98
	3.4.2.10	Interface of cuflx_subm
	3.4.2.11	Interface of cloud_subm
	3.4.2.12	Interface of physc_subm_3 105
	3.4.2.13	Interface of physc_subm_4 108
	3.4.2.14	Interface of free_subm_memory
3.4.3	Tracer in	nterface
	3.4.3.1	Request a new tracer
	3.4.3.2	Access to tracers with get_tracer
	3.4.3.3	Tracer list data type

CONTENTS

List of Tables

2.1	Namelist cfdiagctl	6
2.2	Namelist co2ctl	6
2.3	Namelist debugsctl	7
2.4	Namelist dynctl	7
2.5	Namelist gwsctl	9
2.6	Namelist mvstreamctl 1	12
2.7	Namelist ndgctl 1	12
2.8	Namelist nmictl	16
2.9	Namelist parctl	17
2.10	Namelist physctl	17
2.11	Namelist radctl	18
2.12	Namelist runctl	23
2.13	Namelist submdiagctl	26
2.14	Namelist submodelctl	29
2.15	Variables of tdiagctl	31
2.16	Namelist tdiagctl	31
2.17	Namelist albedo_ctl	33
2.18	Namelist bethy_ctl	33
2.19	Namelist cbalance_ctl	33
2.19	<pre>cbalance_ctl — continued</pre>	34
2.20	Namelist climbuf_ctl	34
2.21	Namelist dynveg_ctl	35
2.22	Namelist jsbach_ctl	35
2.22	jsbach_ctl — continued	36
2.23	Namelist soil_ctl	36
2.23	soil_ctl — continued Solution and solu	37
2.24	Namelist mvctl	37
2.25	Initial conditions	39
2.26	Climatological boundary conditions	39
2.27	Transient boundary conditions	11
2.28	Parameter files	12
2.29	Output files	13
2.30	Output file echam	14
2.31	Output file forcing	19
2.32	Output file tdiag	50
2.33	Variables of test_echam6.sh	55
2.34	Automatic run script generation	57
2.35	Variables of after.sh	59

Variables of POSTJOB	59
Variables of POSTJOBdiff	60
Predefined dimensions	84
Submodel interface	88
Parameters of stepon_subm	90
Parameters of physc_subm_1	91
Parameters of radiation_subm_1	92
Parameters of radiation_subm_2	94
Parameters of vdiff_subm	96
Parameters of rad_heat_subm	98
Parameters of physc_subm_2	99
Parameters of cuflx_subm 1	102
Parameters of cloud_subm	04
Parameters of physc_subm_3	06
Parameters of physc_subm_4 1	109
	Variables of POSTJOB

Chapter 1

Introduction

The ECHAM6 model is a program for the interactive calculation of the general circulation. This manual contains a user guide of ECHAM6 (chapter 2) including a description of the compilation procedure on the supercomputer platform blizzard at DKRZ Hamburg (section 2.1), a description of the input namelists (section 2.2), input files (section 2.3), and ouput files (section 2.4), a description of example run scripts (section 2.5), and postprocessing scripts (section 2.6). We restrict our description to the supercomputer platform blizzard at DKRZ in Hamburg. Performing a simulation on other computer platforms requires the same input data, but the compiling procedure and the directory structure for output in particular, will be different.

Chapter 3 contains a short description of the code of ECHAM6 and is intended to be a guide for people who work with the source code of the atmosphere part of ECHAM6. An introduction to the ECHAM6–code with explanations will become available in form of a lecture soon ("Using and programming ECHAM6 — a first introduction").

This description is valid for version echam-6.1.00.

Chapter 2

User guide

2.1 Compiling ECHAM6

The following commands have to be executed in order to compile the ECHAM6 model on the supercomputer platform blizzard at Deutsches Klimarechenzentrum (DKRZ):

- Checkout a model version with command: svn checkout http://svn.zmaw.de/svn/echam6/tags/echam-<tag_number> of a certain tagged version.
- Load the appropriate compiler version used for ECHAM6, e.g.: module load IBM/xlf13.1.0.2
- Go into the directory echam-<tag_number> and execute the command ./configure --with-openmp
- Start the actual compilation with the command make

2.2 Input namelists

2.2.1 Input namelists in file namelist.echam

In Fortran, you can provide the values of input variables that are organized in namelists, specifying name and value of each variable. Several namelists are used to specify the input of ECHAM6. Some of the namelists are for the atmospheric part and have to be written into the file namelist.echam, others determine input variables of the land surface model JSBACH and have to be written into namelist.jsbach. The atmospheric part can accept the following namelists in namelist.echam (alphabetical order):

cfdiagctl: CFMIP dignostics.

co2ctl: interactive CO_2 budget calculation.

columnctl: single column model.

debugsctl: creates a stream for grid point variables that can be written to output easily (for debugging).

dyctl: parameters for atmosphere dynamics.

gwsctl: gravity wave parameterisation.

hratesctl: diagnostic of heating rates.

mvstreamctl: variables controlling output of mean values.

nmictl: normal mode analysis of waves.

ndgctl: variables which are related to the nudging of the model, i.e. to the relaxation method constraining the meteorological variables divergence, vorticity, temperature and pressure to externally given values.

parctl: parameters concerning the parallel configuration of model.

physctl: variables related to the physics calculation like switching on/off radiation, diffusion, convection, surface exchange, ...

radctl: variables for controlling the radiation calculation.

runctl: contains variables concerning the start and the end of a simulation.

submdiagctl: submodel diagnostics.

submodelctl: namelists for registration of submodels in ECHAM6.

tdiagctl: tendency diagnostic.

The syntax for each namelist in namelist.echam is:

Listing 2.1: namelist syntax

```
& <namelist name>
<varname> = <value>
/
```

Remark: The mere presence of a certain variable in a certain namelist does not mean that the action associated with this variable really works properly or works at all.

Variables describing repeated events have a special format (type "special" in the following tables):

{interval}, {unit}, {adjustment}, {offset}

where {interval} is a positive integer number, {unit} is one of 'steps', 'seconds', 'minutes', 'hours', 'days', 'months', 'years', {adjustment} is one of 'first', 'last', 'exact', 'off', and {offset} is an integer number giving the offset with respect to the initial date of the simulation in seconds. A detailed description of the control of time events can be found in the lecture "Using and programming ECHAM6 — a first introduction" by S. Rast. The variable list is given in alphabetical order even if the most important variables are not at the first place in this case.

2.2.1.1 Namelist cfdiagctl

This namelists contains only one parameter to switch on or off the CFMIP diagnostics of 3–dimensional fluxes.

Table 2.1: Namelist cfdiagctl				
Variable	type	Explanation	default	
locfdiag	logical	switches on/off CFMIP di- agnostic output of convec- tive mass flux and 3-D ra- diation fluxes	. FALSE .	

Namelist co2ctl 2.2.1.2

This namelist controls the behaviour of the CO_2 submodel. This submodel is not a simple submodel like the transport of some gas phase species would be because the CO_2 module interacts with the JSBACH surface and vegetation model. In this namelist, the behaviour of the CO_2 submodel in the atmosphere simulated by ECHAM6 and the interaction with the ocean and soil simulated by JSBACH can be controlled.

	Ta	able 2.2: Namelist co2ct1		
Variable	type	Explanation	default	
lco2_flxcor	logical	switches on/off flux correc- tion for exact mass balance	. TRUE .	
lco2_mixpbl	logical	switches on/off CO_2 mixing in planetary boundary layer	. TRUE .	
lco2_2perc	logical	switches on/off limitation of relative CO_2 tendency to 2%	.FALSE.	
lco2_emis	logical	switches on/off reading pre- scribed CO_2 emissions from a file	.FALSE.	
lco2_clim	logical	switches on/off treating the CO_2 concentration as a climatological quantity not being transported	.FALSE.	
lco2_scenario	logical	switches on/off reading CO_2 concentrations from a cer- tain greenhouse gas scenario	.FALSE. .TRUE. ighg=1 lco2=.FAI	but if and .SE.

2.2.1.3Namelist columnctl

This namelist controls the behaviour of the column model. It is an old version of the column model that is not working and has to be replaced by a newer version.

2.2.1.4Namelist debugsctl

The debug stream is meant to provide a quick and easy tool to the user of ECHAM6 that allows him to write any 2d- or 3d-gridpoint variable to an extra stream for debugging. A detailed _

_

Table 2.3: Namelist debugsct1				
Variable	type	Explanation	default	
nddf	integer	number of 3d–fields created	0	
		in addition to the default		
		fields		
nzdf	integer	number of 2d–fields created	0	
		in addition to the default		
		fields		
$putdebug_stream$	special	output frequency of debug	6, 'hours',	
		stream	'first', O	

description can be found in the document cr2009_03_31 (can be provided by S. Rast (sebastian.rast@zmaw.de)).

2.2.1.5Namelist dynctl

With the help of these namelist parameters, the (large scale) dynamics of the atmosphere can be controlled.

Table 2.4: Namelist dynctl				
Variable	type	Explanation	default	
apsurf	double prec	fixed global mean of sur- face pressure in Pa fixing the mass of the dry atmo- sphere	98550.0	
damhih	double prec	extra diffusion in the middle atmosphere	1000.	
		table co	ontinued on next page	

dampth	double prec	damping time in hours for the horizontal diffusion of vorticity (linear square	nn=21, lmidatm=.FALSE. 6.0. 15.0 if
		Laplacian), divergence, and temperature. Depends on	nlev=11 nn=21,
		the spectral resolution nn	lmidatm=.TRUE.: 192.0
			nn=31: 12.0, 15.0 if nley=11
			nn=42: 9.0
			nn=63: 7.0
			nn=85: 5.0
			nn=127: 1.5
			nn=159: 2.0
			nn=213: 2.0
			nn=255: 0.5
di a adam	an act al	frequency for diamontic	nn=319: 1.0
alagdyn	special	output of quantities de-	5, days,
		scribing the dynamics of the atmosphere	011,0
diagvert	special	frequency for special (all	5, 'days',
-		layers) diagnostic output of quantities describing the	'off', 0
enspodi	double prec	factor by which upper sponge layer coefficient is increased from one layer to the adiacent layer above	1.0
enstdif	double prec	factor by which strato- spheric horizontal diffusion is increased from one layer	1.0
eps	double prec	coefficient in the Robert– Asselin time filter	0.1
hdamp	double prec	damping factor for strong stratospheric damping	1.0
ldiahdf	logical	switches on/off statistical analysis of horizontal diffu- sion	.FALSE.
lumax	logical	switches on/off the printing of information on maximum	.FALSE.
lzondia	logical	wma speeas purpose unknown	FALSE

Table 2.4: dynctl — continued

nlvspd1	integer	model layer index of upper-	1
		most layer of upper sponge	
nlvspd2	integer	model layer index of lowest	1
		layer of upper sponge	
nlvstd1	integer	model layer index of upper-	1
	Ŭ	most laver at which strato-	
		spheric horizontal diffusion	
		is enhanced	
n]	integer	model lever index of leve	1
nivstaz	meger	model layer index of low-	1
		est layer at which strato-	
		spheric horizontal diffusion	
		is enhanced	
ntrn(1:nlev)	integer	layer and resolution de-	${\tt see} \ {\tt setdyn.f90}$
		pendent critical wave num-	
		bers for strong stratospheric	
		damping	
spdrag	double prec	coefficient for upper sponge	0 0 if
opurug	double pree	layor in 1/s	lmidatm= TRUE ·
		layer III 1/5	10000×10^{-4}
			0.926 × 10
			(see Tab. 2.12
vcheck	double prec	threshold value for check of	200.0
		high windspeed in m/s	if
			lmidatm=.TRUE.
			(see Tab. 2.12 :
			235.0
vcrit	double prec	critical velocity above which	nn=106: 68.0
	*	horizontal diffusion is en-	all other nn:
		hanced in m/s. Depends on	85.0
		the spectral resolution nn	- • • •
		she spectral resolution m	

Table 2.4:	dynctl —	continued
------------	----------	-----------

2.2.1.6 Namelist gwsctl

This namelist controls the settings for the gravity wave drag parameterization.

	\mathbf{T}	able 2.5: Namelist gwsctl	
Variable	type	Explanation	default
emiss_lev	integer	model layer index counted	nlev=39: 7
		from the surface at which	nlev=199: 26
		gravity waves are emit-	all other nlev:
		ted. This number depends	10
		on the vertical resolution	
		and corresponds to a model	
		layer that is at roughly	
		600 hPa in the standard at-	
		mosphere.	

$front_thres$	double prec	minimum value of the fron-	0.12
		togenesis function for which	
		gravity waves are emitted	
		from fronts in $(K/m)^2/h$	
iheatcal	integer	controls upper atmosphere	1
		processes associated with	
		gravity waves:	
		iheatcal=1: calculate	
		heating rates and diffusion	
		coefficient in addition to	
		momentum flux deposition	
		iheatcal=2: momentum	
		flux deposition only	
kstar	double prec	typical gravity wave hori-	$5 imes 10^{-5}$
	1	zontal wave number	
lat rmscon hi	double prec	latitude above which extra-	10.0
	I I I I I I I I I I I I I I I I I I I	tropical gravity wave source	
		is used. Is only relevant if	
		lrmscon lat= TRUE	
lat rmscon lo	double prec	latitude below which trop-	5.0
100_1000001_10	double pree	ical gravity wave source	0.0
		is used. Is only relevant	
		if lrmscon lat= TRUE	
		There is a linear in	
		torpolation between	
		lat rmacon lo and	
		lat_rmacon bi	
		N and C non-activaly	
		hot was the values given	
		between the values given	
		by rmscon_lo (associated	
		with the tropical gravity	
		wave parameterization) and	
		rmscon_hi associated with	
		the extratropical gravity	
		wave parameterization	
lextro	logical	switches on/off the Doppler	.TRUE.
		spreading extrowave param-	
		eterization by Hines	
lfront	logical	switches on/off gravity	.TRUE.
		waves emerging from fronts	
		and the background. Pa-	
		rameterization by Charron	
		and Manzini	

Table 2.5: gwsctl — continued

lozpr	logical	switches on/off the back- ground enhancement of gravity waves associated with precipitation by Manzini et al Does not work with ECHAM6	. FALSE .
$lrmscon_lat$	logical	switches on/off latitude de- pendent rmscon as defined in setgws. May be over- written by lfront=.TRUE. or lozpr= TRUE	.FALSE.
m_min	double prec	minimum bound in vertical wave number	0.0
pcons	double prec	factor for background en- hancement associated with precipitation	4.75
pcrit	double prec	critical precipitation value above which root mean square gravity wave wind enhancement is applied in mm/d	5.0
rms_front	double prec	root mean square frontal gravity wave horizontal wave number in 1/m	2.0
rmscon	double prec	root mean square gravity wave wind at lowest layer in m/s	1.0
rmscon_hi	double prec	root mean square grav- ity wave wind at lowest layer in m/s for extra- tropical gravity wave source. Is only relevant if lrmscon_lat=.TRUE.	1.0
rmscon_lo	double prec	root mean square grav- ity wave wind at low- est layer in m/s for tropical gravity wave source. Is only relevant if lrmscon_lat=.TRUE Depends on the spectral resolution nn	nn=31: 1.0 nn=63: 1.2 nn=127: 1.05 but 1.1 if lcouple=.TRUE. (see Tab. 2.12) any other nn: 1.1

Table 2.5: gwsctl — continued

2.2.1.7 Namelist hratesctl

This namelist is obsolete since its functionality is included in tdiagctl (see section 2.2.1.17).

2.2.1.8 Namelist mvstreamctl

Using this namelist, the online calculation of mean values of non-accumulated grid point variables of any ouput stream is possible. For each stream, you can ask for one additional stream containing the mean values of a subset of variables of this stream. The namelist mvstreamctl controls which output streams will be doubled. The ouput of mean values of trace species concentrations are written to the ouput stream tracerm. This namelist works together with the namelist mvctl described in section 2.2.10.1. Additional documentation can be found in cr2010_07_28 provided by S. Rast (sebastian.rast@zmaw.de).

Table 2.6: Namelist mvstreamctl			
Variable	type	Explanation	default
m_stream_name(256,1:50)	character	List of names of streams for the elements of which mean values shall be calculated. Note that a maximum of 50 output stream is allowed (including the mean value streams).	empty string

2.2.1.9 Namelist ndgctl

This namelist controls all variables that are relevant for nudging, i.e. relevant for a simulation mode in which the spectral 3d-temperature, vorticity, divergence, surface pressure, and surface temperature can be constrained to external fields obtained e.g. from the assimilation of observations. It has to be underlined that constraining the surface temperature may lead to wrong sea ice coverage since the presence of sea ice is diagnosed from the surface temperature directly without taking into account any hysteresis effects (see cr2008_08_11 by S. Rast, sebastian.rast@zmaw.de).

Table 2.7: Namelist ndgctl			
Variable	type	Explanation	default
dt_nudg_start(1:6)	integer	defines the beginning of the nudging in the experiment. Is of the form yy,mo,dy,hr,mi,se (year, month, day, hour, minute, second)	0,0,0,0,0,0
dt_nudg_stop(1:6)	integer	defines the date at which nudging stops in a simulation. Is of the form yy,mo,dy,hr,mi,se (year, month, day, hour, minute, second)	0,0,0,0,0,0

inudgformat	integer	format of nudging input files	0
		inudgformat = 0: old CRAY format	
		input files	
		inudgformat = 2: netcdf format input	
		file	
ldamplin	logical	linear damping $(ldamplin = .true.)$.true.
		or damping with a parabolic function	
		(ldamplin = .false.) of the nudging	
		efficiency between two synoptic times	
		at which nudging data sets are given	
lnudgdbx	logical	.true. for additional diagnostic out-	.false.
0	8	put about nudgingfalse. otherwise	
lnudøcli	logical	lnudgcli = true; ECHAM6 ignores the	.false.
0	0	information about the year in the nudg-	
		ing data file and reads nudging data in	
		a cyclic way Consequently for each	
		model year the same nudging data are	
		read	
		laudacli — falso: The informa	
		tion about the year is included in the	
		nudging presedure the data to which	
		the wordship construction of derived on the	
		the model is constrained depend on the	
	1	year.	C 3
Inuagira	logical	Inudgird = .true.: normal mode ni-	.Ialse.
		tering is done at reading the data	
		lnudgird = .false.: normal mode fil-	
		tering is done elsewhere. Works only	
		together with lnmi=.true.	
lnudgimp	logical	<pre>lnudgimp = .true.: implicit nudging</pre>	.true.
		<pre>lnudgimp = .false.: explicit nudging</pre>	

Table	2.7:	ndgctl -	- continued
-------	------	----------	-------------

Table 2.7:	ndgctl —	continue
Table 2.7:	ndgctl —	continue

lnudgini	logical	<pre>lnudgini = .false.: ECHAM6 starts or</pre>	.false.
		restarts a simulation for a certain ex-	
		periment from the date given in the	
		namelist by dt_start or the restart	
		date in the restart file	
		lnudgini = .true.: If lresume =	
		.false., the model starts the simu-	
		lation at the date of the first nudg-	
		ing data set being in the nudging	
		files the names of which correspond	
		to dt nudge start There must be	
		nudging files having a file name cor-	
		responding to dt nudge start If	
		Iresume= true the model starts its	
		run at the first data being in the nude	
		ing data files the file names of which	
		correspond to the next data (next	
		time step) of the rerun date	
lnudanat	logical	Indepat — true : pattern nudging	false
Indugpat	logical	Doos not work properly to be removed	.14156.
		Indepat — false: otherwise	
Inudaucha	logical	true for storing additional nudging	falso
Indugwobs	logical	reference fields false otherwise	.14156.
laito	logical	switches on off the Systematic Initial	falso
2116	logical	Tendency Error diagnostic	.iaise.
ltintlin	logical	ltintlin = .true.: linear time inter-	.true.
		polation	
		ltintlin = .false. for cubic spline	
		time interpolation between two synop-	
		tic times at which nudging data sets are	
		given	
ndg_file_div(256)	character	file name template for the file contain-	—
		ing the nudging data for the divergence	
ndg_file_nc(256)	character	file name template for netcdf format file	
		containing all nudging data (tempera-	
		ture, logarithm of surface pressure, di-	
		vergence and vorticity)	
ndg_file_sst(256)	character	file name template for file containing	
		the sea surface temperature	
ndg_file_stp(256)	character	file name template for the file contain-	
		ing the nudging data for the tempera-	
		ture and the logarithm of the surface	
		pressure	
ndg_file_vor(256)	character	file name template for the file contain-	—
		\cdot , , \cdot , \cdot , , , \cdot , \cdot , \cdot , \cdot , \cdot , \cdot , \cdot , , , \cdot , , , , , , \cdot , \cdot , , , , , , , , , , , , , , , , , , ,	

ndg_freez	double prec	temperature at which sea water is as-	271.65
nsstinc	integer	treatment of the sea surface tempera- ture (sst): read new sst data set each nsstinc hours. A value of 0 means that sst is not used and prevents the model to produce too low sea ice cov- erage when nudging since sea ice would be detected only if temperatures drop below ndg freez	0
nsstoff	integer	read the first sst data at hour nsstoff after the beginning of the nudging	12
nudgd(1:80)	double prec	the relaxation time for each model layer for the nudging of the spectral diver- gence is given by $1/(\text{nudgd} \times 10^{-5})s$. Note the maximum of 80 layers!	0.5787(1:80)/s corresponding to 48 hours
nudgdamp	double prec	the nudging between two synoptic times will be reduced to nudgdamp. Consequently, nudgdamp=1.0 means that nudging will be effective at 100% at every time step, nudgdamp=0.0 means that the nudging will be switched off somewhere between two synoptic times at which nudging data are available	1.0
nudglmax	integer	highest index of the model layer at which nudging is performed. Note the maximum of 80 layers!	80
nudglmin	integer	lowest index of the model layer at which nudging is performed	1
nudgp	double prec	the relaxation time for the nudging of the logarithm of the surface pressure is given by $1/(\text{nudgp} \times 10^{-5})$ s	1.1574/s corre- spondig to 24 hours
nudgdsize	double prec	fraction of the synoptic time interval af- ter which only the fraction nudgdamp is applied in the nudging procedure. If nudgdsize < 0.5, the minimum is reached after a fraction of nudgdsize of the synoptic time interval. This minimum nudging level is then main- tained until the model time reaches the next synoptic time step minus the frac- tion nudgdsize of the synoptic time in- terval. Then, the nudging strength is starting to increase again	0.5

Table 2.7: ndgctl — continued

integer	highest nudged wavenumber. Note	106
	the restriction to model resolution not	
	higher than T106!	
integer	Index of lowest nudged wavenumber	0
	minus one. This means, that with	
	nudgsmin = 0, the spectral coefficient	
	0 (global average) is not nudged	
double prec	the relaxation time for each model layer	1.1574(1:80)/s
	for the nudging of the spectral temper-	corresponding to
	ature is given by $1/(\text{nudgt} \times 10^{-5})s$.	24 hours
	Note the maximum of 80 layers!	
integer	mode of selection of spectral	0
	coefficients for nudging (see	
	mo_nudging_init.f90)	
double prec	the relaxation time for each model layer	4.6296(1:80)/s
_	for the nudging of the spectral vorticity	corresponding to 6
	is given by $1/(\text{nudgv} \times 10^{-5})s$. Note the	hours
	maximum of 80 layers!	
	integer double prec integer double prec	integerhighest nudged wavenumber. Note the restriction to model resolution not higher than T106!integerIndex of lowest nudged wavenumber minus one. This means, that with nudgsmin = 0, the spectral coefficient 0 (global average) is not nudgeddouble precthe relaxation time for each model layer for the nudging of the spectral temper- ature is given by $1/(nudgt \times 10^{-5})s$. Note the maximum of 80 layers!integermode of selection of spectral coefficients for nudging (see mo_nudging_init.f90)double precthe relaxation time for each model layer solution of the spectral coefficients for spectral coefficients for nudging (see

Table 2.7: ndgct1 — continued

2.2.1.10 Namelist nmictl

This is the namelist to control the normal mode analysis.

Table 2.8: Namelist nmictl				
type	Explanation	default		
Dinteger	start date of the NMI procedure. Is	0.0.0.0.0.0		
,	of the form yy,mo,dy,hr,mi,se (year,			
	month, day, hour, minute, second)			
logical	run initialization including clouds	.TRUE.		
integer	number of time steps of accumulation	8		
	interval for diabatic tendencies			
integer	number of time steps in an iteration in-	2		
	terval			
integer	number of time steps of pre-integration	2		
1 11	interval	10.0		
double prec	cut off period in hours (used for hudg-	12.0		
double proc	mg)	6 0		
double prec	ization)	0.0		
	type)integer logical integer integer double prec double prec	Table 2.8: Namelist nmict1typeExplanationDintegerstart date of the NMI procedure. Is of the form yy,mo,dy,hr,mi,se (year, month, day, hour, minute, second)logicalrun initialization including cloudsintegernumber of time steps of accumulation interval for diabatic tendenciesintegernumber of time steps in an iteration in- tervalintegernumber of time steps of pre-integration intervaldouble preccut off period in hours (used for nudg- ing)double preccut off period in hours (used for initial- ization)		

2.2.1.11 Namelist parctl

This namelist controls the parallelization of the ECHAM6 program.

_

Variable	type	Explanation	default
db_host(132)	character	hostname of db server of timing	, ,
		database	
lunitrans	logical	switches on/off the use of the UNI-	.FALSE.
		TRANS module for transposes	
lunitrans_datatype	slogical	switches on/off MPI data types in UNI-	.TRUE.
		TRANS transposes	
lunitrans_debug	logical	switches on/off the debugging of the	.FALSE.
		UNITRANS calls	
network_logger(132)character	hostname for network logging	, ,
nproca	integer	number of processors for set A division	1
		of earth	
nprocb	integer	number of processors for set B division	1
		of earth	
nprocio	integer	number of processors used for I/O, not	0
		yet functional	

Table 2.9: Namelist parct1

2.2.1.12 Namelist physctl

This namelist controls the physics calculations in ECHAM6. These are mainly calculations in the grid point space with parametrized equations for convection, diffusion, gravity waves, and the exchange of energy and mass at the surface of the earth.

Table 2.10: Namelist physctl			
Variable	type	Explanation	default
iconv	integer	switch for convection scheme:	1
		iconv = 1: Nordeng	
		iconv = 2: Tiedtke	
		iconv = 3: Hybrid	
$\texttt{lcdnc_progn}$	logical	switches on/off prognostic cloud	.false.
		droplet number concentration	
lcond	logical	switches on/off large scale condensa-	.true.
		tion scheme	
lconv	logical	switches on/off convection	.true.
lconvmassfix	logical	switches on/off aerosol mass fixer in	.true.
		convection (obsolete?)	
lcover	logical	switches on/off Tompkins cloud cover	.true.
		scheme	
lgwdrag	logical	switches on/off gravity wave drag	.true. for all spec-
		scheme	tral resolutions, ex-
			cept T21 for which
			it is .false.
		table co	ontinued on next page

lice	logical	switches on/off sea-ice temperature calculation	.true.
$lice_supersat$	logical	switches on/off saturation over ice for cirrus clouds (former $icnc = 2$)	.false.
lmfpen	logical	switches on/off penetrative convection	.true.
lphys	logical	switches on/off the parameterisation of diabatic processes	.true.
lrad	logical	switches on/off radiation calculation	.true.
lsurf	logical	switches on/off surface–atmosphere ex- changes	.true.
lvdiff	logical	switches on/off vertical diffusion processes	.true.
nauto	integer	autoconversion scheme (not yet imple- mented)	1
ncd_activ	integer	type of cloud droplet activation scheme (not yet implemented)	0
ncvmicro	integer	microphysics scheme in convection pa- rameterization (not yet implemented)	0

Table 2.10: physctl — continued

2.2.1.13 Namelist radctl

The namelist radctl controls the radiation calculation, in particular the frequency of the calls of the full radiation scheme, and which greenhouse gas concentrations and aerosol properties are taken into account. See the scientific documentation of ECHAM6 for futher details. For some namelist variables, special documentation exists and can be provided by S. Rast (sebastian.rast@zmaw.de): 3d-ozone climatology (cr2010_04_08), CO₂ submodel (cr2009_12_10), stratospheric aerosols by T. Crowley or HAM (cr2011_03_23), tropospheric aerosols by S. Kinne (cr2009_01_09), variable solar irradiance (cr2010_04_01), volcanic aerosols by G. Stenchikov (cr2010_03_15).

fco2	double prec	if an external co2 scenario ($i\sigma h\sigma = 1$	1
1002	double pree	and $ico2 = 4$) is used the CO ₂ con-	1.
		centrations are multiplied by fco2	
iaero	integer	iaero = 0: the aerosol concentrations	2
	0	are set to zero in the radiation compu-	
		tation	
		iaero = 1: prognostic aerosol of a sub-	
		model (HAM)	
		iaero = 2: climatological Tanre	
		aerosols	
		iaero = 3: aerosol climatology com-	
		piled by S. Kinne	
		iaero = 5: aerosol climatology com-	
		piled by S. Kinne complemented with	
		the volcanic aerosols of G. Stenchikov	
		iaero = 6: aerosol climatology com-	
		piled by S. Kinne complemented with	
		the volcanic aerosols of G. Stenchikov	
		plus additional (stratospheric) aerosols	
		from submodels like HAM. The ad-	
		ditional aerosol optical properties are	
		computed from effective radii and the	
		aerosol optical depth at 550 nm, both	
		quantities provided by external files	
		with the help of a lookup table by	
		S. Kinne (b30w120), see Tab. 2.28	
		iaero = 7: aerosol climatology com-	
		piled by S. Kinne complemented by the	
		volcanic aerosols by T. Crowley that	
		are computed using the lookup table by	
		S. Kinne ($b20w120$), see Tab. 2.28	
		There is no $iaero = 4$.	
icfc	integer	icfc = 0: all chloro-fluoro-carbon	2
		(CFC) concentrations are set to zero for	
		the radiation computation	
		icfc = 1: transported CFCs by any	
		submodel (not yet implemented)	
		icfc = 2: uniform volume mixing ra-	
		tios as defined in the 2-element vector	
		cfcvmr(1:2) are used for CFCII and	
		UFU12, respectively	
		1 crc = 4: uniform volume mixing ra-	
		tios for a specific scenario defined by	
		igng are used in the radiation compu-	
		tation	

Table 2.11: radctl — continued

Table 2.11:	radctl -	- continued
Table 2.11:	radct1 —	- continuec

ich4	integer	ich4 = 0: CH ₄ concentration is set to	3
		zero for the radiation computation	
		$1cn4 = 1$: transported CH_4 by any sub-	
		i ab 4	
		$1 \text{Cn}4 \equiv 2$: uniform volume mixing ra-	
		tio cn4vmr of methane used in radiation	
		$\frac{1}{2} = 1 $	
		1 cn 4 = 5: In the troposphere a volume	
		layers above the troposphere is used in	
		the rediction compution	
		ich 4 = 4; a uniform volume mixing re-	
		1 CH4 = 4. a uniform volume mixing ra-	
		parameter i ghg is used in the radiation	
		computation	
ico?	integer	$i_{co2} = 0$; $CO_{concentration}$ set to	2
1002	meger	2002 = 0.0002 concentration set to	2
		$i_{co2} = 1$; interactively calculated CO ₂	
		1002 = 1. Interactively calculated $002volume mixing ratio is used with a start$	
		volume mixing ratio is used with a start	
		$i_{co2} = 2$: uniform volume mixing ratio	
		co2vmr used in radiation computation	
		ico2 = 4: uniform volume mixing ratio	
		for a certain scenario run defined by the	
		ighg parameter is used	
ighg	integer	ighg = 0: no specific scenario is chosen	
-00		ighg = 1: a certain scenario of green-	
		house gas volume mixing ratios is used.	
		Caution: the variables icfc. ich4.	
		ico2. in2o have to be set to the values	
		corresponding to the usage of a scenario	
		in that case	
ih2o	integer	ih2o = 0: H ₂ O is not taken into ac-	1
		count in the radiation computation, i.e.	
		specific humidity, cloud water, cloud ice	
		are all set to zero for the radiation com-	
		putation	
		ih2o = 1: use prognostic specific hu-	
		midity, cloud water and cloud ice in ra-	
		diation computation	
		±	

Table 2.11:	radctl -	continued
-------------	----------	-----------

	•		
in2o	integer	in2o = 0: the N ₂ O concentration is set to zero for the radiation computa- tion	3
		in20 - 1: transported N ₂ O by any	
		submodel (not vet implemented)	
		in2o = 2: a uniform volume mixing ra-	
		tio of n_{20} where n_{10} is used for the radiation	
		computation	
		in2n = 3: a uniform volume mixing	
		ratio of n 20vmr is used in the tropo-	
		sphere with a decay in the layers above	
		the troposphere for the radiation com-	
		putation	
		$in2o = 4^{\circ}$ a uniform volume mixing	
		ratio of N_2O for a specific scenario run	
		defined by ighg is used for the radia-	
		tion computation	
io3	integer	io3 = 0: the O ₃ concentration is set to	3
	0	zero for the radiation computation	
		$io3 = 1$: transported O_3 by any sub-	
		model (not yet implemented)	
		$io3 = 2$: climatological O_3 volume	
		mixing ratios given in spectral space	
		are used in the radiation computation	
		as it was done in ECHAM4	
		io3 = 3: climatological O ₃ volume	
		mixing ratios given in gridpoint space	
		in a NetCDF file are used in the radia-	
		tion computation	
		io3 = 4: climatological O_3 volume	
		mixing ratios provided by the IPCC	
		process in NetCDF files are used for the	
		radiation calculation	
io2	integer	io2 = 0: the O ₂ concentration is set to	2
		zero for the radiation computation	
		io2 = 2: the O ₂ volume mixing ratio is	
		set to $o2vmr$ for the radiation compu-	
		tation.	

isolrad	integer	controls choice of solar constant. isolrad = 0: standard rrtm solar con-	3
		stant	
		isolrad = 1: time dependent spec-	
		trally resolved solar constant read from file	
		<pre>isolrad = 2: pre-industrial solar con- stant</pre>	
		<pre>isolrad = 3: solar constant for amip runs (fixed in time)</pre>	
l_lrtm	logical	switches on/off new LRTM radiation scheme	.true
$l_newoptics$	logical	switches on/off new optical parameters of clouds	.true.
l_srtm	logical	switches on/off new RRTM solar radiation scheme	.true
ldiur	logical	switches on/off diurnal cycle	.true.
lradforcing(2) logical	switches on/off the diagnostic of instantaneous aerosol forcing in the solar spectral range (lradforcing(1)) and the thermal spectral range (lradforcing(2)).	.false.,.false.
n2ovmr	double prec	N_2O volume mixing ratio (mole frac- tion) for in2o=2,3	309.5×10^{-9}
nmonth	integer	nmonth = 0: execute full annual cycles nmonth = 1, 2,, 12: perpetual rep- etition of the month corresponding to the number to which nmonth is set. The perpetual month works with a 360- day orbit only (1_orbvsop87=.false. must be set in runct1).	0
o2vmr	double prec	O_2 volume mixing ratio	0.20946
trigrad	special	time interval for radiation calculation	2,'hours','first',(
yr_perp	integer	year in the Julian calendar for per- petual year simulations. Works with l_orbvsop87=.true. only.	-99999

Table 2.11: radct1 — continued

2.2.1.14 Namelist runctl

This namelist contains variables which control the start and end of a simulation and general properties of the output. For some namelist variables, special documentation exists and can be provided by S. Rast (sebastian.rast@zmaw.de): debug stream (cr2009_03_31) and tendency diagnostic (cr2011_01_18).

_

Variable	type	Explanation	default
delta_time	integer	time step length in seconds	default depends on model resolu- tion, e.g.: T63L47: 600 s, T63L95: 450 s, T127L95: 240 s
dt_resume	integer	reset restart date to a user defined value. Is of the form yy,mo,dy,hr,mi,se (year, month, day, hour, minute, sec- ond)	0,0,0,0,0,0
dt_start(1:6)	integer	vector of 6 integer numbers defining the start date of the experiment of the form yy,mo,dy,hr,mi,se (year, month, day, hour, minute, second)	0,0,0,0,0,0
dt_stop	integer	stop date of experiment. Is of the form yy,mo,dy,hr,mi,se (year, month, day, hour, minute, second)	0,0,0,0,0,0
gethd	special	time interval for getting data from hy- drological discharge model	1,'days','off',0
getocean	special	time interval for sending atmospheric data to an ocean program coupled to ECHAM5	1,'days','off',0
iadvec	integer	<pre>selection of the advection scheme: iadvec = 0: no advection of trace species and water vapour iadvec = 1: semi Lagrangian trans- port algorithm iadvec = 2: spitfire advection scheme iadvec = 3: flux form semi Lagrangian transport (Lin and Bood)</pre>	3 – flux form semi Lagrangian trans- port
l_orbvsop87	logical	<pre>l_orbvsop87 = .true.: use orbit functions from vsop87 (real orbit); l_orbvsop87 = .false.: "climatologi- cal" pcmdi (AMIP) orbit</pre>	.true.
l_volc	logical	switches on/off volcanic aerosols. This variable is obsolete and has to be re- moved. Use iaero of the radctl namelist instead.	.false.
lamip	logical	switches on/off the use of a timeseries of sea surface temperatures (AMIP style simulation)	.false.
lcollective_wri	telogical	switch on/off parallel writing of restart files	.false.

Table 2.12: Namelist runctl

lcouple	logical	switches on/off coupling with ocean	.false.
lcouple_co2	logical	switches on/off the interactive CO_2	.false.
		budget calculation in a coupled atmo-	
		sphere/ocean run	
ldailvsst	logical	switches on/off daily varying sea sur-	.false.
j ~ ~ ~ ~	1001000	face temperature and sea ice	
ldobug	logical	avitables on off mass fiver diagnostics	folgo
Idebug	logical	switches on/on mass fixer diagnostics	.laise.
Idebugev	logical	switches on/on the output of debugging	.ialse.
		information about events	
ldebughd	logical	switches on/off the output of debugging	.false.
		information about the hydrological dis-	
		charge model	
ldebugio	logical	switches on/off the output of debugging	.false.
C C		information about input and output	
ldebugmem	logical	switches on/off the output of debugging	.false.
		information about memory use	
ldeburg	logical	switches on off the debug stream	false
ldiagamin	logical	switches on off AMIP diagnostics	false.
lulagamip	logical	switches on/off the security at the her	.laise.
Ind	logical	switches on/on the coupling to the hy-	.ialse.
		drologic discharge model (HD model)	
lhd_highres	logical	switches on/off high resolution (0.5°)	.false.
		output of hydrological discharge model	
lhd_que	logical	switches on/off additional output from	.false.
		hydrological discharge model	
lindependent_rea	adlogical	switches on/off reading initial or restart	.false.
-	0	data by each MPI rank separately	
lipcc	logical	switches on/off the use of IPCC param-	.false.
r		eters	
lmeltnond	logical	switches on off the presence of melt-	true
Imeropona	logical	ponds in albedo calculation	. UI dC.
7	lamical	gwitches on off middle streaghere	+
	logical	switches on/on initiale atmosphere	.true.
		model version	
lmlo	locical	switches on/off mixed layer ocean	.false.
lnmi	logical	switches on/off normal mode initialisa-	.false.
		tion	
lnudge	logical	switches on/off the "nudging" i.e. con-	.false.
		straining the dynamic variables diver-	
		gence, vorticity, temperature, and sur-	
		face pressure towards given external	
		values by relaxation	
ไทพอ	logical	switches on/off Numerical Weather	false
"r	1001001	Prediction mode	
lport	logical	switches on/off the introduction of a	falso
троте	logical	rendom porturbation for portability	.IAIDE.
		tandom perturbation for portability	
		tests	

Table 2.12: runctl — continued

lprint_m0	logical	switches on/off measuring and printing	.false.
lresume	logical	<pre>lresume = .true.: perform a rerun lresume = .false.: perform an initial</pre>	.false.
		run	
lroot_io	logical	disables (.true.) or enables (.false.) classical root I/O.	.true.
ltctest	logical	switches on/off a test of time control without performing a true simulation	.false.
ltdiag	logical	switches on/off an additional detailed tendency diagnostic	.false.
ltimer	logical	switches on/off the output of some performance related information (run time)	.false.
ly360	logical	switches on/off the use of a 360-day year	.false.
ndiahdf	integer	logical unit number for file containing horizontal diffusion diagnostics.	10
nhd_diag	integer	number of region for which hydrological discharge model diagnostics is required	0
no_cycles	integer	stop after no_cycles of reruns	1
no_days	integer	stop after no_days days after dt_start	-1
no_steps	integer	stop after the integration of no_steps of time steps after dt_start	-1
nproma	integer	vector length of calculations in grid point space	number of longi- tudes
nsub	integer	number of subjobs	0
$\texttt{out_datapath}(256)$	character	name of path to which output files are written. Must have a "/" at the end	, ,
$\texttt{out_expname}(19)$	character	prefix of output file names))
out_filetype	integer	format of meteorological output files out filetype = 1: GBIB format	1
		out_filetype = 2: NetCDF format	
out stype	integor	$out_111etype = 0$: NetCDF4 format	0
out_ztype	integer	compression type of output mes	0
		out ztype = 0. no compression	
		output	
		out_ztype = 2: zip only for NetCDF4	
putdata	special	time interval at which output data are written to output files	12,'hours','first',(
puthd	special	time interval for putting data to the hy- drological discharge model	1,'days','off',0

Table 2.12: r	unctl —	continued
---------------	---------	-----------

putocean	special	time interval for receiving ocean data in	1,'days','off',0
		the atmospheric part if ECHAM6 is cou-	
		pled to an ocean model	
putrerun	special	time interval for writing rerun files	1,'months','last',0
rerun_filetype	integer	format of rerun files	2
		$rerun_filetype = 2$: NetCDF format	
		rerun_filetype = 4: NetCDF2 for-	
		mat	
<pre>subflag(1:9)</pre>	logical	vector of nine switches for switching	.false.
-	_	on/off the binding of subjob output to	
		output streams	
trac_filetype	integer	format of tracer output files	1
		$trac_filetype = 1$: GRIB format	
		$trac_filetype = 2$: NetCDF format	
trigfiles	special	time interval at which new output files	1,'months','first',0
		are opened	
trigjob	special	time interval for the automatic submis-	1,'months','off',0
		sion of subjobs	
		J	

Table 2.12: runctl — continued

2.2.1.15 Namelist submdiagctl

This namelist controls diagnostic output of generic submodel variables and streams. In the "pure" ECHAM6 version, these switches do not have any functionality.

Table 2.13: Namelist submdiagctl			
Variable	type	Explanation	default
drydep_gastrac(24,1:200)	character	names of gas phase tracers to be included in dry depo- sition stream. Special name 'default' is possible	<pre>drydep_gastrac(1) = 'default', drydep_gastrac (2:200) = ''</pre>
drydep_keytype	integer	aggregation level of output of dry deposition stream drydep_keytype=1: output by tracer drydep_keytype=2: output by (chemical) species drydep_keytype=3: output by (aerosol) mode drydep_keytype=4: user defined	2
drydep_lpost	logical	switches on/off output of wet deposition stream	.true.
drydep_tinterval	special	output frequency of wet de- position stream	putdata (see runctl namelist)

table	continued	on	next	page
-------	-----------	----	------	------

_

drydepnam(32,1:50)	character	list of tracer names of dry deposition output stream. There are the special names 'all' = 'detail', and 'default'	<pre>drydepnam(1) = 'default', drydepnam(2:50) = ''</pre>
sedi_keytype	integer	aggregation level of output of sedimentation stream sedi_keytype=1: output by tracer sedi_keytype=2: output by (chemical) species sedi_keytype=3: output by (aerosol) mode sedi_keytype=4: user de- fined	2
emi_gastrac(24,1:200)	character	names of gas phase trac- ers to be included in emis- sion stream to diagnose emissions. Special name 'default' is possible	<pre>emi_gastrac(1) = 'default', emi_gastrac (2:200) = ''</pre>
emi_keytype	integer	aggregation level of out- put of emission diagnostic stream emi_keytype=1: output by tracer emi_keytype=2: output by (chemical) species emi_keytype=3: output by (aerosol) mode emi_keytype=4: user de- fined	2
emi_lpost	logical	switches on/off output of emission diagnostic stream	.true.
emi_lpost_detail	logical	switches on/off detailed (emissions by sector) out- put of emission diagnostic stream	.true.
emi_tinterval	special	output frequency of emis- sion diagnostic stream	putdata (see runctl namelist)
eminam(32,1:50)	character	<pre>list of tracer names of emission diagnostic stream. There are the special names 'all' = 'detail', and 'default'</pre>	<pre>eminam(1) = 'default', eminam(2:50) = ''</pre>

sedi_keytype	integer	aggregation level of output of sedimentation stream	2
		tracer	
		$\texttt{sedi_keytype=2: output by}$	
		(chemical) species	
		sedi_keytype=3: output by	
		sedi kevtype=4: user de-	
		fined	
sedi_lpost	logical	switches on/off output of sedimentation stream	.true.
sedi_tinterval	special	output frequency of sedi- mentation stream	putdata (see runctl
	1		namelist)
sed1nam(32,1:50)	cnaracter	sedimentation diagnostic	<pre>sedinam(1) = 'default'</pre>
		stream. There are the spe-	sedinam(2:50)
		cial names $'all' = 'detail'$,	= '''
		and 'default'	
vphysc_lpost	logical	switches on/off output of	.true.
vphvscnam(32,1:50)	character	list of variable names of	vphyscnam(1)
. [vphysc stream. There are	= 'default',
		the special names 'all'	vphyscnam(2:50)
	• 1	and 'default'	= ''
vphysc_tinterval	special	output frequency of vphysc	putdata
		Stream	(see function namelist)
wetdep_gastrac(24,1:200)	character	names of gas phase tracers	wetdep_gastrac(1)
		to be included in wet depo-	= 'default',
		sition stream. Special name	wetdep_gastrac
unt dan kautuna	interer	'default' is possible	(2:200) = ,,
werdeb-keλrλbe	Integer	of wet deposition stream	2
		wetdep_keytype=1: output	
		by tracer	
		wetdep_keytype=2: output	
		by (chemical) species	
		wetaep_keytype=3: Output	
		wetdep_keytype=4: user	
		defined	
wetdep_lpost	logical	switches on/off output of	.true.
		wet deposition stream	

Table 2.13:	submdiagctl	- continued	
-------------	-------------	-------------	
wetdep_tinterval	special	output frequency of wet de-	putdata
--------------------	-----------	-----------------------------	-----------------
		position stream	(see runctl
			namelist)
wetdepnam(32,1:50)	character	list of tracer names of wet	wetdepnam(1)
		deposition output stream.	= 'default',
		There are the special names	wetdepnam(2:50)
		'all' = 'detail', and	= ''
		'default'	

Table 2.13: submdiagctl — continued

2.2.1.16 Namelist submodelctl

This namelist contains general submodel switches of "proper submodels" including switches that control the coupling among submodels.

Table 2.14: Namelist submodelctl				
Variable	type	Explanation	default	
laircraft	logical	switches on/off aircraft	.false.	
lburden	logical	emissions switches on/off burden cal- culation (column integrals)	.false.	
lco2	logical	switches on/off CO ₂ sub- model (interacting with JS- BACH)	.false.	
lchemheat	logical	switches on/off chemical heating	.false.	
lchemistry	logical	switches on/off chemistry	.false.	
ldrydep	logical	switches on/off dry deposi-	.false.	
lham	logical	tion switches on/off HAM aerosol submodel	.false.	
lemissions	logical	switches on/off emissions	.false.	
lhammonia	logical	switches on/off HAMMO- NIA submodel (middle and upper atmosphere submodel)	.false.	
lhammoz	logical	switches on/off HAM aerosol submodel and MOZART chemistry sub- model and the coupling between the two	.false.	
lhmzhet	logical	switches on/off hammoz	.false.	
lhmzphoto	logical	heterogeneous chemistry switches on/off hammoz photolysis	.false.	

lhmzoxi	logical	switches on/off hammoz ox- idant fields	.false.
linterchem	logical	switches on/off coupling of chemistry with radiation	.false.
linteram	logical	switches on/off interactive airmass calculation (HAM- MONIA)	.false.
lintercp	logical	switches on/off interactive c_p calculation (HAMMO-NIA)	.false.
llght	logical	switches on/off interactive computation of lightning emissions	.false.
lmethox	logical	switches on/off methane ox- idation in stratosphere	.false.
lmegan	logical	switches on/off biogenic vegetation emissions	.false.
lmicrophysics	logical	switches on/off micros- physics calculations	.false.
lmoz	logical	switches on/off MOZART chemistry submodel	.false.
loisccp	logical	switches on/off isccp simu- lator. Currently, the isccp simulator is implemented outside the submodel inter- face	.false.
losat	logical	switches on/off satellite simulator. Currently, the locosp switch for the cosp satellite simulator is implemented outside the submodel interface.	.false.
lsalsa	logical	switches on/off SALSA aerosol submodel	.false.
lsedimentation	logical	switches on/off sedimenta- tion	.false.
ltransdiag	logical	switches on/off atmospheric energy transport diagnostic	.false.
lwetdep	logical	switches on/off drydeposi- tion	.false.
lxt	logical	switches on/off generic test of tracer submodel	.false.

Table 2.14: submodelctl — continued

2.2.1.17 Namelist tdiagctl

This namelist determines the output of the tendency diagnostic. The tendencies of Tab. 2.15 can be diagnosed. The following variables are contained in the diagnostic stream tdiag. The top row describes the variables, the first column gives the routine names (processes) producing the tendencies saved under the names in the corresponding rows. The units of the variables and code numbers are given in parenthesis.

Table 2.15: Variables of the diagnostic stream tdiagctl						
variable routine (process)	du/dt (m/s/day)	dv/dt (m/s/day)	dT/dt (K/day)	$\frac{dq/dt}{(1/\mathrm{day})}$	$\frac{dx_1/dt}{(1/\mathrm{day})}$	$\frac{dx_{ m i}/dt}{(1/{ m day})}$
vdiff	dudt_vdiff (code 11)	dvdt_vdiff (code 21)	dtdt_vdiff (code 1)	dqdt_vdiff (code 31)	dxldt_vdiff (code 41)	dxidt_vdiff (code 51)
radheat			dtdt_rheat_sw (code 62) dtdt_rheat_lw (code 72)			
gwspectrur	n dudt_hines (code 13)	dvdt_hines (code 23)	dtdt_hines (code 3)	—	—	—
ssodrag	dudt_sso (code 14)	dvdt_sso (code 24)	dtdt_sso (code 4)		_	_
cucall	dudt_cucall (code 15)	dvdt_cucall (code 25)	dtdt_cucall (code 5)	dqdt_cucall (code 35)	_	_
cloud	—	—	$dtdt_cloud$ $(code 6)$	dqdt_cloud (code 36)	dxldt_cloud (code 46)	dxidt_cloud (code 56)
			atmospheric va	riables		
Box area m^2	surfac	m^2/s^2	$rac{\ln(p_{ m s}/p^{\ominus})}{ m spectral}$	p_s Pa	T(t) spectral	$\frac{T(t-\overline{\Delta}t)}{\mathrm{K}}$

Additional documentation can be found in cr2011_01_18 provided by S. Rast (sebas-tian.rast@zmaw.de).

Table 2.16: Namelist tdiagctl				
Variable	type	Explanation	default	
puttdiag	special	Output frequency of tendency stream	6, 'hours',	
			'first', O	
table continued on next page				

tdiagnam(32,1:22)	character	determines th	ie ch	oice of tendencies	tdiagnam(1) =
		that are writte	en to	the output stream	'all',
		_tdiag			tdiagnam(2 :
					22) = ' end'
		keyword		explanation	
		'all'		output all ten-	
				dencies of tdiag	
				stream	
		one	of	output all tenden-	
				cies associated	
				with	
		'vdiff',		vdiff,	
		'radheat',		$\mathbf{radheat},$	
		'gwspectrum	1 ' ,	$\mathbf{gwspectrum},$	
		'ssodrag',		$\mathbf{ssodrag},$	
		'cucall',		cucall,	
		'cloud'		cloud	
		one	of	of all processes,	
				output the ten-	
				dency	
		'uwind',		du/dt,	
		'vwind',		dv/dt,	
		'temp',		dT/dt,	
		'qhum',		dq/dt,	
		'xl',		dx_1 ,	
		'xi',		dx_{i}	
		·			
		one of the v	vari-	output this	
		able na	mes	tendency,	
		of the t	ten-	e.g. du/dt due to	
		dencies lis	sted	gwspectrum	
		in table 2	.15.	<u> </u>	
		e.g. dudt_hin	nes		

Table 2.16: tdiagctl — continued

2.2.2 Input namelists in file namelist.jsbach

The JSBACH namelist file namelist.jsbach contains several independent Fortran namelists:

albedo_ctl: defines parameters that are used in the albedo scheme

bethy_ctl: controls the photosynthesis (BETHY) module

cbalance_ctl: defines parameters of the carbon module

climbuf_ctl: defines parameters for multi-year climate variable calculation

dynveg_ctl: controls the dynamic vegetation

jsbach_ctl: defines the basic settings of a JSBACH simulation. The namelist includes parameters to switch on or off JSBACH modules, and controls IO.

soil_ctl: defines parameters used in the soil module

The tables in the following subsections list all namelist parameters of the different JSBACH namelists. Each parameter is listed in alphabetical order and is briefly described. Besides, the Fortran type and the default values are given.

2.2.3 Namelist albedo_ctl

The namelist for the albedo scheme is read in routine config_albedo of module mo_land_surface.f90. It is used only if the albedo scheme is switched on, i.e. use_albedo=.TRUE. in namelist jsbach_ctl (compare table 2.22).

Table 2.17: Namelist albedo_ctl				
Parameter	Type	Description	Default	
use_albedocanopy	logical	.TRUE.: read maps of canopy albedo	.FALSE.	
		(albedo_veg_nir and albedo_veg_vis from jsbach.nc); .FALSE.: use PFT		
use_snowage	logical	if .TRUE., account for snow aging in albedo calculation	.TRUE.	

2.2.4 Namelist bethy_ctl

The namelist bethy_ctl controls the BETHY module for photosynthesis. It is used only if use_bethy=.TRUE. in namelist jsbach_ctl (compare table 2.22). The namelist is read in routine config_bethy of mo_bethy.f90.

Table 2.18: Namelist bethy_ctl				
Parameter	Type	Description	Default	
ncanopy	integer	number of canopy layers	3	

2.2.5 Namelist cbalance_ctl

The chalance module handling the carbon pools is controlled by namelist chalance_ctl. The namelist is read in routine init_chalance_bethy in mo_chal_bethy.f90.

Table 2.19: Namelist cbalance_ctl				
Parameter	Type	Description	Default	
			table continued on next page	

cpools_file_name	character	name of the file containing initial data for the carbon pools. Only used if read_cpools=.TRUE.	'Cpools.nc'
ndepo_file_name	character	name of the file containing nitro- gen deposition data. Only used if with_nitrogen=.TRUE. in jsbach_ctl and read_cpools=.TRUE.	'Ndepo.nc'
npools_file_name	character	name of the file containing initial data for the nitrogen pools. Only used if with_nitrogen=.TRUE. in jsbach_ctl and read_npools=.TRUE.	'Npools.nc'
read_cpools	logical	initialize carbon pools with data from an external file.	.FALSE.
read_ndepo	logical	read nitrogen deposition data from an external file. Only used if with_nitrogen=.TRUE. in jsbach_ctl	.FALSE.
read_npools	logical	initialize nitrogen pools with data from an external file. Only used if with_nitrogen=.TRUE. in jsbach_ctl	.FALSE.

Table 2.19: $cbalance_ctl$ — continued

2.2.6 Namelist climbuf_ctl

The climate buffer provides climate variables as multi-annual running means, minimums or maximums. It is controlled by namelist climbuf_ctl. The namelist is read in routine config_climbuf (mo_climbuf.f90).

Table 2.20: Namelist climbuf_ctl				
Parameter	Type	Description	Default	
init_running_means	logical	initialize the calculation of long term climate variables. (Should be .TRUE. at the beginning of the second year of an initialized experiment.)	.FALSE.	
${\tt read_climbuf}$	logical	read climate buffer data from an exter- nal file.	.FALSE.	
climbuf_file_name	character	name of the climate buffer file. Only used if read_climbuf=.TRUE.	'climbuf.nc'	

2.2.7 Namelist dynveg_ctl

The dynamic vegetation is controlled by dynveg_ctl. The namelist is read in config_dynveg (mo_dynveg.f90). It is used only, if the dynamic vegetation is switched on by setting USE_DYNVEG= .TRUE. in namelist jsbach_ctl (compare table 2.22).

Parameter	Type	Description	Default
accelerate_dynveg	real	factor to accelerate vegetation dynam-	1.
		ics. Default: no acceleration	
dynveg_all	logical	activate competition between woody	.FALSE.
		types and grasses (not recommended)	
dynveg_feedback	logical	switch on/off the feedback of the	. TRUE .
	-	dynamic vegetation on the JSBACH	
		physics. (Cover fractions are kept con-	
		stant, while fire and wind break still in-	
		fluence the carbon cycle.)	
fpc_file_name	character	name of an external vegetation file.	'fpc.nc'
-		Only used if read_fpc=.TRUE.	-
read_fpc	logical	read initial cover fractions from an ex-	.FALSE.
-	C	ternal file; the file name is defined with	
		parameter fpc_file_name.	

Table 2.21: Namelist dynveg_ctl

2.2.8 Namelist jsbach_ctl

The namelist jsbach_ctl includes the basic parameters for a JSBACH simulation. It is needed to switch on or off the different physical modules as e.g. the dynamic vegetation or the albedo scheme. Besides, it controls file names and other IO-options. The namelist is read in routine jsbach_config of module mo_jsbach.f90.

Table 2.22: Namelist jsbach_ctl			
Parameter	Type	Description	Default
debug	logical	additional output for debugging	.FALSE.
debug_Cconservation	logical	additional debugging output to solve	.FALSE.
file_type	character	output format: GRIB, NETCDF, NETCDF2 or NETCDF4	'GRIB'
grid_file lcc_forcing_type	character character	input file containing grid information Scheme for (anthropogenic) landcover changes. NONE: no landcover change; MAPS: read maps of landcover fractions; TRANSITIONS: read maps with landuse transitions	'jsbach.nc' 'NONE'
lctlib_file lpost_echam	character logical	name of the land cover library file if .TRUE., write jsbach output vari- ables, even if they are part of the echam output	'lctlib.def' .FALSE.

c5compat	logical	if .TRUE., preserve compatibility in JS-	.TRUE.
		BACH carbon handling with CMIP5	
		simulations (root exudates to litter	
		pools)	
missing_value	real	missing value for the output (ocean val-	NF_FILL_REAL
		ues)	
ntiles	integer	number of tiles defined on each grid cell	-1
read_cover_fract	logical	read cover fractions from the JSBACH	.FALSE.
		initial file rather than from restart file	
soil_file	character	file containing initial data of soil prop-	'jsbach.nc'
		erties	-
standalone	logical	Type of model run; .TRUE.: stand-	.TRUE.
		alone JSBACH run; .FALSE.: JS-	
		BACH driven by an atmosphere model	
surf_file	character	file containing initial data of the land	'jsbach.nc'
		surface	5
test_Cconservation	logical	switches on/off carbon conservation	.FALSE.
	0	test	
test_stream	logical	additional stream for model testing	.FALSE.
use_albedo	logical	switches on/off a dynamic albedo	.FALSE.
		scheme	
use_bethy	logical	switches on/off the BETHY model	.FALSE.
U U	0	(photosynthesis, respiration)	
use_dynveg	logical	switches on/off the dynamic vegetation	.FALSE.
	0	module	
use_phenology	logical	switches on/off the phenology module	.FALSE.
		to calculate the LAI	
veg_file	character	file containing initial data for the vege-	'jsbach.nc'
-		tation	-
with_nitrogen	logical	calculate the nitrogen cycle (not fully	.FALSE.
č	Ŭ	implemented in the current version).	

Table 2.22: jsbach_ctl — continued

Namelist soil_ctl 2.2.9

The configurable parameters to control the soil physics are defined in namelist soil_ctl. The namelist is read in config_soil in module mo_soil.f90.

Table 2.23: Namelist soil_ctl			
Parameter	Type	Description	Default
crit_snow_depth	real	Critical snow depth for correction of surface temperature for melting [m]	$5.85036 imes 10^{-03}$

<pre>moist_crit_fract</pre>	real	critical value of soil moisture above	0.75
		which transpiration is not affected by	
		the soil moisture stress; expressed as	
		fraction of the maximum soil moisture	
		content	
<pre>moist_max_limit</pre>	real	upper limit for maximum soil mois-	-1.0
		ture content: If positive, max_moisture	
		from initial file is cut off at this value.	
<pre>moist_wilt_fract</pre>	real	soil moisture content at permanent	0.35
		wilting point, expressed as fraction of	
		maximum soil moisture content	
skin_res_max	real	maximum water content of the skin	$2. imes 10^{-04}$
		reservoir of bare soil [m]	

Table 2.23:	soil_ctl —	continued
-------------	------------	-----------

Input namelists in other files 2.2.10

2.2.10.1Namelist mvctl

For each stream in the mvstreamctl namelist, a mvctl namelist has to be created. The mvctl namelist has to be written to a file {namelist}.nml where {namelist} is the name of the respective stream. For tracers, the namelist has to be written to tracer.nml. See section 2.2.1.8 also. Additional documentation can be found in cr2010_07_28 provided by S. Rast (sebastian.rast@zmaw.de).

Table 2.24: Namelist mvctl			
Variable	type	Explanation	default
putmean	special	frequency at which the respec- tive mean value stream shall be written	1,'months','first',0
meannam(32,1:500)	character	list of variables (e.g. mete- orological variables, chemical species) for which mean values are calculated	empty strings

stddev(1:500)	integer	This variable controls the cal- culation of the mean of the	0,0,,0
		culation of the mean of the	
		square of each variable in the	
		list meannam.	
		$\mathtt{stddev}(1) = -1$: calculate the	
		mean square of all variables	
		present in meannam	
		$\mathtt{stddev}(\mathtt{i}) = 0$: Do not	
		calculate the mean of the	
		square of variable i except if	
		$\mathtt{stddev}(\mathtt{1}) = -\mathtt{1}$	
		$\mathtt{stddev}(\mathtt{i}) = 1$: Calculate the	
		mean of the square of variable	
		i in list meannam.	

Table 2.24: mvctl — continued

2.3 Input data

This section provides a brief description of the input files but does not describe the input data itself. Such a description can be found in the scientific part of the documentation or (at least in parts) on the web: :

```
http://www.mpimet.mpg.de/en/science/models/echam/echam5/
```

inputoutput/echam5-input-files.html

All input files are stored in the directory

/pool/data/ECHAM6/

and its subdirectories for the atmospheric part and in the directory

/pool/data/JSBACH

for the land–surface model. In /pool/data/ECHAM6/, you find the resolution independent data. Furthermore, it contains directories {RES} where {RES} has to be replaced by one of the spectral model resolutions T31, T63, T127, and T255, respectively providing resolution dependent input files. Similarly, the resolution dependent land–surface model data are stored in subdirectories T31, T63, etc. of the /pool/data/JSBACH directory. In the following, the vertical resolution will be denoted by {LEV} which represents the number of vertical σ -levels preceeded by a capital L. The most common model resolutions are T63L47 and T127L95. Currently, ECHAM6 is tuned for the resolutions T63L47, T63L95, T127L95 only. Other resolutions may require a new tuning of the model in order to adjust the parameters of certain equations to the particular model resolution. Some of the input data contain information about the land–sea distribution and therefore are provided for various ocean resolutions even if the model is not coupled to an interactive ocean. The ocean resolution will be symbolized by {OCR}. Currently, the GR15, GR30, TP04, TP10, TP6M ocean resolutions are considered, but not all possible combinations with spectral ECHAM6 resolutions are available.

There are three kinds of input data: initial conditions, boundary conditions, and data of model parameters. The boundary conditions can be either "transient boundary conditions" depending on the actual year or "climatological boundary conditions" which do not depend on the year but may contain a seasonal cycle. The files containing the initial conditions are listed in Tab. 2.25.

Resolution dependent	ECHAM6 initial da	$ a ext{ in /pool/data/ECHAM6//{RES}}$
Link target	Link name	Explanation
{RES}{LEV}_jan_spec.nc	unit.23	Variables describing the vertical
		σ -coordinates, spectral fields like
		divergence, vorticity etc. serving
		to start the model from some ini-
		tial values. These values are very
		rough estimates only and do not
		describe any dynamic state of the
		atmosphere that occurs with high
		probability!
${RES}{OCR}_jan_surf.nc$	unit.24	Surface fields like land sea mask,
		glacier mask etc. for a start of the
		model from initial values.
Resolution indepen	dent ECHAM6 initia	al data in /pool/data/ECHAM6/
hdstart.nc	hdstart.nc	Initial data for hydrological dis-
		charge model.

Table 2.25: Initial conditions for ECHAM6

The climatological boundary condition files are listed in Tab. 2.26. Sea surface temperature and sea ice cover climatologies for ECHAM6 are based on 500 year-climatologies of our coupled control simulations and are available for the T63 resolutions only. Furthermore, some of the data are formally read by ECHAM6 but not used: The leaf area index, vegetation ratio, and albedo e.g. are calculated by the surface model JSBACH and it is impossible to use climatological values read from files. Actually, JSBACH reads these quantities again, but discards them also. Even if dynamic vegetation is switched off: This just means that the geographical distribution of vegetation types is fixed in time, but the leaf area index changes with season and soil moisture and consequently also the albedo varies with time according to the vegetation model used in JSBACH.

The input data for the hydrological discharge model (see Tab. 2.25 and Tab. 2.26) are not entirely resolution independent, but the current data can be used for a wide range of resolutions (probably not for T255?).

Table 2.26: Climatological boundary conditions for ECHAM6. Some of the climatological boundary conditions have to be linked to year dependent files. The year is symbolized by yyyy.

Resolution dependent data in /pool/data/ECHAM6/{RES}			
Link target	Link name	Explanation	
{RES}_03clim2.nc	unit.21	Zonal mean ozone climatology for	
		radiation calculation. These files	
		should not be used in ECHAM6, and	
		are obsolete.	
		table continued on next page	

 a_8

(RES)-020NB_JENTS_YI=Y2.1C 020NFYYY 5-4 020NB_CHIR60y Using an value over the years y1 to y2. Currently, y1-y2=1850-1860 and 1979-1988 is available. These files have to be linked to filenames ozonyyyy where yyyy is the actually simulated year. {RES}{0CR}_VLTCLIM.nc unit.90 {RES}{0CR}_VGRATCLIM.nc unit.91 (RES)_TSLCLIM2.nc unit.92 Climatological leaf area index (monthly data). {RES}{0CR}_piControl- unit.92 LR.sst_1880-2379.nc Climatological sea sufface temperature (monthly data). [RES]{0CR}_piControl- unit.96 LR.sic_1880-2379.nc Climatological sea sufface temperatures (monthly data, only in T63GR15 available). [RES]{0CR}_piControl- unit.96 LR.sic_1880-2379.nc Tropospheric aerosols aero_coarse_yyy.nc Optical properties of coarse mode acrosols in the solar spectral range. Since these are mostly of natural origin, climatological properties in the thermal spectral range. Only coarse mode acrosol putperties in the thermal spectral range. Only coarse mode acrosol putperties in the thermal spectral range. Only coarse mode acrosol putperties in the solar spectral range. Only coarse mode acrosol putperties in the thermal spectral range. Only coarse mode acrosol putperties in the thermal spectral range. Only coarse mode acrosol putperties in the spectral range. Only coarse mode acrosol putperties in the spectral range. Only coarse mode acrosol putperties in the thermal spectral range. Only coarse mode acrosol putpertis in the thermal spectral range. Nelly a view			2 d grana alimatalagu haing a
mean value over the years yft to y2. Currently, y1-y2=1850-1860 and 1979-1988 is available. These files have to be linked to filenames aconytyy where yyyy is the actually simulated year. {RES}{OCR}-VLTCLIM.nc unit.90 [RES] TSLCLIM2.nc unit.91 Climatological leaf area index (monthly data). [RES] TSLCLIM2.nc unit.92 Climatological vegetation ratio (monthly data). [RES] TSLCLIM2.nc unit.92 Climatological sea surface temperatures (monthly data, only in TG3GR15 available). [RES] GOCR] piControl- unit.96 [RES] COR] piControl- unit.96 [RES] Aeropt_ aero_coarse_yyy.nc aero2/{RES}_aeropt_ aero_coarse_yyy.nc aero_farir_yyyy.nc Aerosol optical properties of coarse mode aerosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological boundary conditions for land surface temped to the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions for land surface temped t	{RES}_OZONE_CMIP5_y1-y2.nd	с огопуууу	3-d ozone climatology being a
y2. Currently, y1-y2=1800-1860 and 1979-1988 is available. These files have to be linked to filenames ozonyyyy where yyyy is the actu- ally simulated year. {RES}{OCR}_VLTCLIM.nc unit.90 Climatological leaf area index (monthly data). {RES}{OCR}_VGRATCLIM.nc unit.91 Climatological leaf area index (monthly data). {RES}{OCR}_piControl- unit.92 Climatological leaf area index (monthly data). {RES}{OCR}_piControl- unit.92 Climatological sea surface tem- perature (monthly data). Climatological sea surface tem- perature (monthly data). Climatological sea ice data (monthly data). Climatological sea ice data unothly data, only in T63GR15 available). Tropospheric aerosols aero2/{RES}_aeropt. aero_farir.yyyy.nc kinne lw b16 coa.nc tenses Land surface model JSBACH (/pool/data/JSBACH) tad surface model JSBACH (/pool/data/JSBACH) tenses Land surface model JSBACH (/pool/data/JSBACH). It also de- pends on the ocean resolution be- cause the land-sea mask does. The structure of JSBACH. It also de- pends on the coean resolution be- cause the land-sea mask does. The structure of JSBACH. It also de- pends on the coean resolution be- cause the land-sea mask does. The structure of JSBACH. It also de- pends on the coean resolution be- cause the land-sea mask does. The structure of JSBACH. It also de- pends on the coean resolution be- cause the land-sea mask does. The structure of JSBACH. It also de- pends on the coean resolution be- cause the land-sea mask does. The structure of JSBACH. It also de- pends on the coean resolution be- cause the land-sea mask does. The structure of JSBACH. It also de- pends on the coean resolution be- cause the land-sea mask does. The structure of JSBACH. It also de- pends on the coean resolution be- cause the land-sea mask does. The structure of JSBACH. It also de- pends on the coean resolutions are avai			mean value over the years y1 to
ard 1979-1988 is available. These files have to be linked to filenames ozonyyyy where yyyy is the actu- ally simulated year. (RES}{OCR}_VGRATCLIM.nc unit.90 Climatological leaf area index (monthly data). {RES}_TSLCLIM2.nc unit.92 Climatological vegetation ratio (monthly data). {RES}_OCR}_piControl- LR.sst_1880-2379.nc Unit.92 Climatological sea surface tem- perature (monthly data, only in T63GR15 available). {RES}_OCR}_piControl- unit.96 Climatological sea ice data (monthly data, only in T63GR15 available). {RES}_OCR}_piControl- unit.96 Climatological sea ice data (monthly data, only in T63GR15 available). {RES}_OCR}_piControl- unit.96 Climatological sea ice data (monthly data, only in T63GR15 available). Tropospheric aerosols aeros2/{RES}_aeropt_ kinne_sw_b14_coa.nc Tropospheric aerosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) jsbach/ jsbach_{RES}{OCR}_{t}_yyyy.nc Boundary conditions for land sur- ral origin, climatological bound- ary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{OCR}_{t}_yyyy.nc Boundary conditions for land sur- ral origin, climatological bound- ary conditions for land sur- race model JSBACH (/pool/data/JSBACH) Boundary conditions for land sur- race mostly of natu- ral origin, climatological bound- ary conditions for land sur- race model JSBACH (/pool/data/JSBACH) Boundary conditions for land sur- race model JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.			y2. Currently, $y1-y2=1850-1860$
RES}{0CR}_VLTCLIM.nc unit.90 Climatological leaf area index (monthly data). {RES}{0CR}_VGRATCLIM.nc unit.91 Climatological leaf area index (monthly data). {RES}{0CR}_VGRATCLIM.nc unit.91 Climatological vegetation ratio (monthly data). {RES}{0CR}_piControl- unit.92 Climatological leaf surface temperature (monthly data). T{RES}{0CR}_piControl- unit.20 Climatological sea surface temperature (monthly data, only in T63GR15 available). {RES}{0CR} piControl- unit.96 Climatological sea ice data (monthly data, only in T63GR15 available). {RES}{0CR} aeropt_ aero_coarse yyy.nc Optical properties of coarse mode aerosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological boundary conditions for land surface tore historic times. aero2/{RES}_aeropt_ jsbach.nc Boundary conditions for land surface tore historic times. aero2/{RES}{0CR}-{t}-yyyy.nc Coarse mode arosols play a role. Since these are mostly of natural origin, climatological boundary conditions for land surface tore historic times. aero2/{RES}_aeropt_ aero_farir_yyy.nc Boundary conditions for land surface tore historic			and 1979-1988 is available. These
RES}{OCR}_VLTCLIM.nc unit.90 Climatological leaf area index (monthly data). {RES}{OCR}_VGRATCLIM.nc unit.91 Climatological vegetation ratio (monthly data). {RES}_TSLCLIM2.nc unit.92 Climatological leaf area index (monthly data). {RES}_OCR}_piControl- unit.92 Climatological and surface temperature (monthly data). [RES}{OCR}_piControl- unit.92 Climatological sea surface temperatures (monthly data, only in T63GR15 available). [RES}{OCR}_piControl- unit.96 Climatological sea ice data (monthly data, only in T63GR15 available). [RES]_aeropt_ aero_coarse_yyyy.nc Optical properties of coarse mode acrosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode acrosols play a role. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ jsbach_ jsbach.nc Boundary conditions for land surface model JSBACH (/pot)/data/JSBACH) jsbach_{RES}{OCR}_{t}_yyyy.nc face model JSBACH (/pot)/data/SBACH) Boundary conditions for land surface model JSBACH in synaw kdos. Since these are mostly of natural origin, climatological boundary conditions for land surface model JSBACH in synaw kdos. Since these are solat operatin sea suff			files have to be linked to filenames
{RES}{0CR}_VLTCLIM.nc unit.90 Climatological leaf area index (nonthly data). {RES}_TSLCLIM2.nc unit.91 Climatological vegetation ratio (monthly data). {RES}_TSLCLIM2.nc unit.92 Climatological sea surface temperature (monthly data). T{RES}{0CR}_piControl- unit.92 Climatological sea surface temperature (monthly data). T{RES}{0CR}_piControl- unit.90 Climatological sea surface temperature (monthly data, only in T63GR15 available). {RES}_COR}_piControl- unit.96 Climatological sea ice data (monthly data, only in T63GR15 available). Ress_areopt_ aero_coarse_yyy.nc Optical properties of coarse mode aerosols aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological boundary conditions for land surface times. aero2/{RES}_aeropt_ jbbach.nc Boundary conditions for land surface thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological boundary conditions for land surface times. ipsbach_{} jsbach_{} jsbach.nc Boundar			ozonyyyy where yyyy is the actu-
{RES}{OCR}_VLTCLIM.nc unit.90 Climatological leaf area index (monthly data). {RES}{OCR}_VGRATCLIM.nc unit.91 Climatological vegetation ratio (monthly data). {RES}_TSLCLIM2.nc unit.92 Climatological land surface temperature (monthly data). T{RES}{OCR}_piCOntrol- unit.20 Climatological sea surface temperatures (monthly data, only in T63GR15 available). [RES}{OCR}_piControl- unit.96 Climatological sea ice data (monthly data, only in T63GR15 available). [RES]_aeropt_ aero_coarse yyyy.nc Optical properties of coarse mode aerosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode ary conditions are sufficient for historic times. aero2/{RES}_aeropt_ jsbach_{ jsbach.nc Boundary conditions for land surface model JSBACH (/pool/data/JSBACH) jsbach_{ jsbach.nc jsbach.nc Boundary conditions for land surface model JSBACH (/pool/data/JSBACH.It also depends on the ocean resolution because the land-sea mask does. The structure of JSBACH may vary with the number of tiles, or 12tiles. Not all combinations of resolutions are available. Itales, Not all combinations of resolutions are available.			ally simulated year.
[RES]{OCR]_VGRATCLIM.nc unit.91 (monthly data). [RES]_TSLCLIM2.nc unit.92 Climatological land surface temperature (monthly data). [RES]{OCR]_piControl- unit.20 Climatological sea surface temperatures (monthly data). [RES]{OCR]_piControl- unit.96 Climatological sea surface temperatures (monthly data, only in T63GR15 available). [RES]{OCR]_piControl- unit.96 Climatological sea ice data (monthly data, only in T63GR15 available). [RES]{0CR]_piControl- unit.96 Climatological properties of coarse mode aerosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. Since these are mostly of natural origin, climatological boundary conditions for land surface model JSBACH (/pool/data/JSBACH) jsbach_{{RES}{0CR}_{{t}}_{{t}}_yyyy.nc Boundary conditions for land surface model JSBACH is available. Since the and-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded if {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.	${RES}{OCR}_VLTCLIM.nc$	unit.90	Climatological leaf area index
{RES}{0CR}.VGRATCLIM.nc unit.91 Climatological vegetation ratio (monthly data). {RES}_TSLCLIM2.nc unit.92 Climatological sea surface temperature (monthly data). T{RES}{0CR}_piControl- unit.92 Climatological sea surface temperatures (monthly data). [RES]{0CR}_piControl- unit.96 Climatological sea surface temperatures (monthly data, only in T63GR15 available). [RES]{0CR}.piControl- unit.96 Climatological properties of coarse mode aerosols aero2/{RES}_aeropt_ aero_coarse_yyy.nc Optical properties of coarse mode aerosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyy.nc Aerosol optical properties of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological boundary conditions for land surface model JSBACH (/pool/data/JSBACH) jsbach_{res}{0CR}_{t},yyy.nc Boundary conditions for land surface model JSBACH (/pool/data/SBACH) jsbach_{res}{0CR}_{t},yyyy.nc Boundary conditions for land surface model JSBACH is on the loce. The surface model JSBACH is on the ocean resolution becanse the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=t=ttil			(monthly data).
RES}_TSLCLIM2.nc unit.92 (monthly data). T{RES}{OCR}_piControl- unit.20 Climatological land surface temperature (monthly data). LR_sst_1880-2379.nc Climatological sea surface temperatures (monthly data, only in T63GR15 available). [RES]{OCR}_piControl- unit.96 Climatological sea ice data (monthly data, only in T63GR15 available). [RES]{OCR}_piControl- unit.96 Climatological sea ice data (monthly data, only in T63GR15 available). [RES] Tropospheric aerosols aerosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological boundary conditions for land surface times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc Boundary conditions for land surface times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc Boundary conditions for land surface times. isbach_ jsbach.nc Boundary conditions for land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{OCR}_{t}_yyyy.nc Boundary conditions for land surface model JSBACH.nc Boundary conditions for land surface model JSBACH in a surface on the ocean resolution because the land-sea mask does. The structure of JSBACH may vary with the number of tile	{RES}{OCR}_VGRATCLIM.nc	unit.91	Climatological vegetation ratio
{RES}_TSLCLIM2.nc unit.92 Climatological land surface temperature (monthly data). T{RES}{0CR}_piControl- unit.20 Climatological sea surface temperatures (monthly data, only in T63GR15 available). {RES}{0CR}_piControl- unit.96 Climatological sea surface temperatures (monthly data, only in T63GR15 available). {RES}{0CR}_piControl- unit.96 Climatological sea surface temperatures (monthly data, only in T63GR15 available). {RES}_aeropt_ aero_coarse_yyyy.nc Optical properties of coarse mode aerosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological boundary conditions for land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{0CR}_{t}_yyyy.nc Boundary conditions for land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{0CR}_{t}_yyyy.nc Face model JSBACH (/pool/data/SBACH) istoric times. The structure of JSBACH may vary with the number of tiles, not all combinations of resolutions are available. </td <td></td> <td></td> <td>(monthly data).</td>			(monthly data).
T{RES}{0CR}_piControl- unit.20 Climatological sea surface temperatures (monthly data, only in T63GR15 available). [RES}{0CR}_piControl- unit.96 Climatological sea ice data (monthly data, only in T63GR15 available). [RES]{0CR}_piControl- unit.96 Climatological sea ice data (monthly data, only in T63GR15 available). [RES]{0CR}_piControl- unit.96 Climatological sea ice data (monthly data, only in T63GR15 available). [RES]_aeropt_ aero_coarse_yyyy.nc Optical properties of coarse mode acrosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode acrosols play a role. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. kinne_lw_b16_coa.nc jsbach.nc Boundary conditions for land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{0CR}_{t}_yyyy.nc face model JSBACH (/pool/data/SBACH) Boundary conditions for land surface model JSBACH (/pool/data/SBACH) isbach_{RES}{0CR}_{t}_yyyy.nc face model JSBACH (/pool/data/SBACH) sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, encoded in {t}=4tiles, 8til	{RES}_TSLCLIM2.nc	unit.92	Climatological land surface tem-
T{RES}{OCR_piControl- LR_sst_1880-2379.nc RES}{OCR_piControl- LR_sic_1880-2379.nc RES}{OCR_piControl- unit.96 Climatological sea ice data (monthly data, only in T63GR15 available). Climatological sea ice data (monthly data, only in T63GR15 available). Climatological sea ice data (monthly data, only in T63GR15 available). Climatological sea ice data (monthly data, only in T63GR15 available). Tropospheric aerosols aero2/{RES}_aeropt_ kinne_sw_b14_coa.nc aero_farir_yyyy.nc kinne_lw_b16_coa.nc aero_farir_yyyy.nc Land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{OCR}_{t}_yyyy.nc Land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{OCR}_{t}_yyyy.nc RES}{OCR}_{t}_{t}_yyyy.nc} Climatological sea surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{OCR}_{t}_{t}_yyyy.nc} RES}{OCR}_{t}_{t}_yyyy.nc} Climatological sea ice data (monthly data, only in T63GR15 available). Optical properties of coarse mode aerosols in the solar spectral range. Since these are mostly of natural origin, climatological bound- ary conditions are sufficient for historic times. Demolations for land sur- face model JSBACH. It also de- pends on the ocean resolution be- cause the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.			perature (monthly data).
LR.sst_1880-2379.nc peratures (monthly data, only in T63GR15 available). [RES]{0CR}_piControl- LR_sic_1880-2379.nc Climatological sea ice data (monthly data, only in T63GR15 available). Tropospheric aerosols aero2/{RES}_aeropt_ aero_coarse_yyyy.nc Optical properties of coarse mode aerosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natu- ral origin, climatological bound- ary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{0CR}_{t}_yyyy.nc for the sea mask does. The structure of JSBACH in the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.	T{RES}{OCR}_piControl-	unit.20	Climatological sea surface tem-
RES}{OCR}_piControl- LR_sic_1880-2379.nc unit.96 T63GR15 available). Tropospheric aerosols aero2/{RES}_aeropt_ kinne_sw_b14_coa.nc Optical properties of coarse mode arrosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natu- ral origin, climatological bound- ary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) Boundary conditions for land sur- face model JSBACH. It also de- pends on the ocean resolution be- cause the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles. Stiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.	LR sst 1880-2379.nc		peratures (monthly data, only in
{RES}{OCR}_piControl- LR_sic_1880-2379.nc unit.96 Climatological sea ice data (monthly data, only in T63GR15 available). aero2/{RES}_aeropt_ kinne_sw_b14_coa.nc aero_coarse_yyyy.nc Optical properties of coarse mode aerosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ kinne_lw_b16_coa.nc aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natu- ral origin, climatological bound- ary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) Boundary conditions for land sur- face model JSBACH. It also de- pends on the ocean resolution be- cause the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.			T63GR15 available).
LR_sic_1880-2379.nc (monthly data, only in T63GR15 available). IR_sic_1880-2379.nc Tropospheric aerosols aero2/{RES}_aeropt_ aero_coarse_yyyy.nc Optical properties of coarse mode aerosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) jsbach_{ {rsss}}OCR}_{t}_yyyy.nc Boundary conditions for land surface model JSBACH is spectral range. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.	{RES}{OCR}_piControl-	unit.96	Climatological sea ice data
available). aero2/{RES}_aeropt_ kinne_sw_b14_coa.nc aero_farir_yyyy.nc Aerosol optical properties of coarse model aerosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc kinne_lw_b16_coa.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological bound-ary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) Boundary conditions for land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{0CR}_{t}_yyyy.nc Boundary conditions for land surface model JSBACH (/pool/data/JSBACH) mended JSBACH_RES {0CR}_{t}_yyyy.nc Boundary conditions for land surface model JSBACH (/pool/data/JSBACH) gsbach_{RES} {0CR}_{t}_tyyyy.nc Boundary conditions for land surface model JSBACH (/pool/data/JSBACH) genedation beccan resolution beccanse the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.	LR_sic_1880-2379.nc		(monthly data, only in T63GR15
Tropospheric aerosols aero2/{RES}_aeropt_ aero_coarse_yyyy.nc Optical properties of coarse mode aerosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) Since these are mostly of natural origin, climatological boundary conditions for land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{0CR}_{t}_{t}_yyyy.nc Boundary conditions for land surface model JSBACH (/pool/data/JSBACH) isbach_{RES}{0CR}_{t}_{t}_syyy.nc Boundary conditions for land surface model JSBACH (/pool/data/JSBACH) gendon the ocean resolution because the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.			available).
aero2/{RES}_aeropt_ aero_coarse_yyyy.nc Optical properties of coarse mode aerosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) jsbach.nc Boundary conditions for land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{0CR}_{t}_yyyy.nc face model JSBACH (/pool/data/JSBACH. It also depends on the ocean resolution because the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles. 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.		Tropospheric aerosols	
kinne_sw_b14_coa.nc aerosols in the solar spectral range. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natu- ral origin, climatological bound- ary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{OCR}_{t}_yyyy.nc} Boundary conditions for land sur- face model JSBACH. It also de- pends on the ocean resolution be- cause the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.	aero2/{RES}_aeropt_	aero_coarse_vvvv.nc	Optical properties of coarse mode
<pre>aero2/{RES}_aeropt_ aero_farir_yyyy.nc aero_farir_yyyy.nc aero_farir_yyyy.nc aero_farir_yyyy.nc aero_farir_yyyy.nc aero_farir_yyyy.nc aero_farir_yyyy.nc aero_farir_yyyy.nc aero_farir_yyyy.nc aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological bound-ary conditions are sufficient for historic times.</pre> Land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{OCR}_{t}_yyyy.nc Boundary conditions for land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{OCR}_{t}_yyyy.nc Boundary conditions for land surface model JSBACH (/pool/data/JSBACH) It also depends on the ocean resolution because the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.	kinne sw b14 coa.nc		aerosols in the solar spectral
<pre>aero2/{RES}_aeropt_ aero_farir_yyyy.nc aero_farir_yyyy.nc historic times. aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological bound-ary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{OCR}_{t}_yyyy.nc Boundary conditions for land sur-face model JSBACH (/pool/data/JSBACH) jsbach_{RES}{OCR}_{t}_syyy.nc face model JSBACH (/pool/data/JSBACH) talso depends on the ocean resolution because the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.</pre>			range. Since these are mostly
aero2/{RES}_aeropt_ aero_farir_yyyy.nc kinne_lw_b16_coa.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) jsbach/ jsbach.nc Boundary conditions for land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{OCR}_{t}_yyyy.nc face model JSBACH is structure of JSBACH. It also depends on the ocean resolution because the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.			of natural origin climatological
aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological bound-ary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{OCR}_{t}_yyyy.nc Boundary conditions for land surface model JSBACH (result of the second sec			boundary conditions are sufficient
aero2/{RES}_aeropt_ aero_farir_yyyy.nc Aerosol optical properties in the thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological bound-ary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) jsbach/ jsbach.nc Boundary conditions for land surface model JSBACH. It also depends on the ocean resolution because the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.			for historic times
kinne_lw_b16_coa.nc thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) jsbach/ jsbach.nc Boundary conditions for land surface model JSBACH. It also depends on the ocean resolution because the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.	aero2/{BES} aeront	aero farir yyyy nc	Aerosol optical properties in the
KINNE_IW_DIGCOLLIC thermal spectral range. Only coarse mode aerosols play a role. Since these are mostly of natural origin, climatological boundary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) jsbach/ jsbach.nc Boundary conditions for land surface model JSBACH. It also depends on the ocean resolution because the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available. Desclution independent data in (neal (data (CEUME (/(DES)))	kinno lu h16 con nc		thormal spectral range Only
Coarse mode acrosols play a role. Since these are mostly of natu- ral origin, climatological bound- ary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) jsbach/ jsbach.nc Boundary conditions for land sur- face model JSBACH. It also de- pends on the ocean resolution be- cause the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.	kinne_iw_bio_coa.nc		thermai spectral range. Only
Since these are mostly of natu- ral origin, climatological bound- ary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{OCR}_{t}_yyyy.nc Boundary conditions for land sur- face model JSBACH. It also de- pends on the ocean resolution be- cause the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.			Coarse mode aerosois piay a role.
ral origin, climatological bound- ary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) jsbach_{RES}{OCR}_{t}_yyyy.nc Boundary conditions for land sur- face model JSBACH. It also de- pends on the ocean resolution be- cause the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.			Since these are mostly of natu-
ary conditions are sufficient for historic times. Land surface model JSBACH (/pool/data/JSBACH) jsbach/ jsbach.nc Boundary conditions for land sur- jsbach_{RES}{OCR}_{t}_yyyy.nc face model JSBACH. It also de- pends on the ocean resolution be- cause the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.			ral origin, climatological bound-
Land surface model JSBACH (/pool/data/JSBACH) jsbach/ jsbach.nc Boundary conditions for land surface model JSBACH. It also depends on the ocean resolution because the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.			ary conditions are sufficient for
jsbach/ jsbach.nc Boundary conditions for land surface model JSBACH. It also depends on the ocean resolution because the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.			historic times.
jsbach/ jsbach.nc Boundary conditions for land sur- jsbach_{RES}{OCR}_{t}_yyyy.nc face model JSBACH. It also de- pends on the ocean resolution be- cause the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.	Land surfa	ace model JSBACH (/pool,	/data/JSBACH)
<pre>jsbach_{RES}{OCR}_{t}_yyyy.nc face model JSBACH. It also de- pends on the ocean resolution be- cause the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.</pre>	jsbach/	jsbach.nc	Boundary conditions for land sur-
pends on the ocean resolution be- cause the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.	jsbach_{RES}{OCR}_{t}_yyyy	r.nc	face model JSBACH. It also de-
cause the land-sea mask does. The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.			pends on the ocean resolution be-
The structure of JSBACH may vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.			cause the land–sea mask does.
vary with the number of tiles, encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.			The structure of JSBACH may
encoded in {t}=4tiles, 8tiles, 11tiles, or 12tiles. Not all combinations of resolutions are available.			vary with the number of tiles,
11tiles, or 12tiles. Not all combinations of resolutions are available.			encoded in $\{t\}=4$ tiles, 8tiles,
combinations of resolutions are available.			11tiles, or 12tiles. Not all
available.			combinations of resolutions are
Regulation independent data in /neel/data/ECUAME//IDEC			available.
Resolution independent data in /pool/data/ECHAMO//{RES}	Resolution ind	lependent data in /pool/da	ta/ECHAM6//{RES}

 Table 2.26:
 Climatological boundary conditions for ECHAM6 continued

hcpara.nc	hdpara.nc	Data for hydrological discharge
		model.

Table 2.26: Climatological boundary conditions for ECHAM6 continued

Furthermore, various transient boundary conditions are available which can either replace their climatological counterparts or be used as supplemental conditions. Examples for transient boundary conditions are observed sea surface temperatures and sea ice data, transient greenhouse gas concentrations or data accounting for interannual variability in solar radiation, ozone concentration or aerosol optical properties. The historical sea surface temperature (SST) and sea ice cover (SIC) data are taken from the Program for Climate Model Diagnosis and Intercomparison (PCMDI, status: November 2009). A list of possible input data can be found in Tab. 2.27.

Table 2.27: ECHAM6 transient boundary conditions. Specific years are symbolized by yyyy.

Resolution dependent data in /pool/data/ECHAM6//{RES}				
Link target	Link name	Explanation		
amip2/	sstyyyy	historical sea surface tempera-		
{RES}_amip2sst_yyyy.nc		tures (monthly data).		
amip2/	ісеуууу	historical sea ice data (monthly		
{RES}_amip2sic_yyyy.nc		data).		
	Tropospheric aerosols			
$aero2/{RES}_aeropt_$	aero_fine_yyyy.nc	Optical properties of fine mode		
kinne_sw_b14_fin_yyyy.n	c	aerosols in the solar spectrum.		
		These aerosols are of anthro-		
		pogenic origin mainly. Therefore,		
		they depend on the year. These		
		are the historical data.		
$aero2/{RES}_aeropt_$	aero_fine_yyyy.nc	Optical properties of fine mode		
kinne_sw_b14_fin_{sc}_y	yyy.nc	aerosols in the solar spectrum.		
		These aerosols are of anthro-		
		pogenic origin mainly. Therefore,		
		they depend on the year. They		
		are provided for different scenar-		
		ios for the future ($\{sc\} = rcp26$,		
		rcp45, rcp85).		
Vol	canic (stratrospheric) aerosols,	Stenchikov		
volcano_aerosols/strat	_ strat_aerosol_sw_yyyy.nc	Aerosol optical properties of		
$aerosol_ir_T{RES}_yyyy.$	nc	stratospheric aerosols of volcanic		
		origin in the solar spectral range.		
volcano_aerosols/strat	_ strat_aerosol_ir_yyyy.nc	Aerosol optical properties of		
$aerosol_ir_T{RES}_yyyy.$	nc	stratospheric aerosols of volcanic		
		origin in the thermal spectral		
		range.		
Volcan	Volcanic (stratrospheric) aerosols, provided by HAM			

N.N.	aoddz_ham_yyyy.nc	Aerosol optical properties as pro-
		vided by the HAM model. These
		data have to be used together
		with the $b30w120$ parameter file
		of Tab. 2.28. The aerosol type
		described by the HAM model has
		to be compatible with that of the
		parameter file.
Transient 3d	l-ozone data in /pool/data/l	ECHAM6/{RES}/ozone2
{RES}_ozone_CMIP5_	ozonyyyy	Historic 3d–distribution of ozone
yyyy.nc		in the stratosphere and tropo-
		sphere.
$\{RES\}_ozone_CMIP5_$	ozonyyyy	3d-distribution of ozone in the
$\{\texttt{sc}\}_{-}$ yyyy.nc		stratosphere and troposphere for
		the scenarios $rcp26$, $rcp45$, and
		rcp85.
Resolut	tion independent data in $/poc$	ol/data/ECHAM6/
Vol	canic (stratrospheric) aerosol	s, T. Crowley
ici5d-ad800-1999.asc	aodreff_crow.dat	Stratospheric aerosol optical
		properties of volcanic aerosols
		compiled by T. Crowley. All
		years are in one file. The $b30w120$
		parameter file of Tab. 2.28 has to
		be used together with these data.
Transient solar	irradiance in /pool/data/EC	HAM6/solar_irradiance
<pre>swflux_14band_yyyy.nc</pre>	swflux_yyyy.nc	Monthly spectral solar irradiance
		for year yyyy.
Green	nhouse gas scenarios in /pool	/data/ECHAM6/
$ ext{greenhouse}_{ ext{sc}}. ext{nc}$	$greenhouse_gases.nc$	Transient greenhouse gas concen-
		trations (all years in one file)
		for the scenarios $\{sc\} = rcp26$,
		rcp45, rcp85. The rcp45-file
		contains the historic data also.

 Table 2.27:
 Transient boundary conditions continued

Some of the equations used in ECHAM6 need tables of parameters. E.g. the radiation needs temperature and pressure (concentration) dependent absorption coefficients, the calculation of the aerosol optical properties at all wave lengths from the effective aerosol radius and the aerosol optical depth at a certain wavelength needs conversion factors. The surface model JSBACH needs further input parameters that are provided in a kind of a standard input file. A list of the input files containing model parameters is provided in Tab. 2.28.

 Table 2.28: Input files for ECHAM6 containing parameters for various physical processes in /pool/data/ECHAM6/

Link target

Link name

Explanation

surrta_data	rrtadata	Tables for RRTM radiation
		scheme — solar radiation.
rrtmg_lw.nc	rrtmg_lw.nc	Tables for RRTMG radiation
		scheme — thermal radiation.
ECHAM6_CldOptProps.nc	ECHAM6_CldOptProps.nc	Optical properties of clouds.
b30w120	aero_volc_tables.dat	Parametrizations of the aerosol
		optical properties in the case of
		T. Crowley aerosols and aerosols
		provided by HAM. This table has
		to be compatible with the aerosol
		data.
jsbach/	lctlib.def	Parametrization of properties of
lctlib_nlct21.def_rev415	54	vegetation and land model JS-
		BACH. (imported from the cos-
		mos svn)

 Table 2.28:
 Parameters files continued

2.4 Output files and variables

The number and names of outputfiles depend on the model configuration. Tab. 2.29 lists all standard output files and gives an overview of the kind of variables being in these files. The names of the outputfiles are composed of the experiment name EXPNAME as it is given by the out_expname variable of the runctl namelist (see section 2.2.1.14), a date information DATE corresponding to the simulation date at which the output file was opened and an extension EXT that describes the output stream or family of output streams written to this file. GRIB format output files do not have further extensions, netcdf format output files have the additional extension .nc. The filename is therefore composed as EXPNAME_DATE_EXT[.nc].

All the variables that are written to an output file are members of so-called streams, a special data structure that allows for standardized output. Not all variables of a stream are written to output files. Detailed information about all streams and variables are written to the standard error output device when ECHAM6 is started.

	Table 2.29: Output files of ECHAM6
Extension EXT	Content
cfdiag	diagnostic of 3–dimensional radiation and convec-
	tive mass flux
co2	diagnostic of CO_2 submodel (carbon cycle)
cosp	COSP simulator output
echam	main echam outputfile comprising several echam
	streams containing 2– and 3–d atmospheric grid-
	point and spectral variables
forcing	radiation fluxes and heating rates
surf	variables from the surface model JSBACH
tdiag	tendency diagnostic

tracer	mass	mixing	ratios	of	(transported)	trace	gas
	specie	es					

 Table 2.29:
 Output files — continued

The number of variables in each output stream also depend on the model configuration. In the case of GRIB output, information about code numbers and variables can be found in the respective files EXPNAME_DATE_EXT.codes. In the case of netcdf output, the explanation of the variable can be found inside the netcdf files. Some of the variables are mean values over the output interval, some are in spectral space, others in grid point space. We give tables of outputvariables of the most important output files only.

2.4.1 Output file echam

The echam output file combines the variables of several output streams (g3b, gl, and sp) and contains the main prognostic and diagonstic ECHAM6 output variables describing the dynamic state of the atmosphere.

Table 2.30: Output file echam. The type of the output fields can be g (instantaneous grid point variable), \overline{g} (mean value over the output interval of grid point variable), s (spectral space variable). The dimension is either 2d (variable depends on longitudes and latitudes only), 3d (variable depends on longitudes, latitudes, and levels).

Name	Code	Type	Unit	Dimension	Stream	Explanation
abso4	235	g	kg/m^2	2d	g3b	anthropogenic sulfur bur-
						den
aclcac	223	$\overline{\mathbf{g}}$		3d	g3b	cloud cover
aclcov	164	$\overline{\mathbf{g}}$		2d	g3b	total cloud cover
ahfcon	208	$\overline{\mathbf{g}}$	W/m^2	2d	g3b	conductive heat flux
						through ice
ahfice	125	g	W/m^2	2d	g3b	conductive heat flux
ahfl	147	$\overline{\mathbf{g}}$	W/m^2	2d	g3b	latent heat flux
ahfliac	110	$\overline{\mathbf{g}}$	W/m^2	2d	g3b	latent heat flux over ice
ahfllac	112	g	W/m^2	2d	g3b	latent heat flux over land
ahflwac	111	$\overline{\mathbf{g}}$	W/m^2	2d	g3b	latent heat flux over water
ahfres	209	g	W/m^2	2d	g3b	melting of ice
ahfs	146	$\overline{\mathbf{g}}$	W/m^2	2d	g3b	sensible heat flux
ahfsiac	119	g	W/m^2	2d	g3b	sensible heat flux over ice
ahfslac	121	$\overline{\mathbf{g}}$	W/m^2	2d	g3b	sensible heat flux over land
ahfswac	120	g	W/m^2	2d	g3b	sensible heat flux over water
albedo	175	g		2d	g3b	surface albedo
albedo_nir	101	g		2d	g3b	surface albedo for near in-
						frared radiation range
albedo_nir_dif	E 82	g		2d	g3b	surface albedo for near in-
						frared radiation range, dif-
						fuse
						table continued on next pare

albedo_nir_dir	80	g		2d	g3b	surface albedo for near in-
						frared radiation range, di- rect
albedo_vis	100	g		2d	g3b	surface albedo for visible ra- diation range
albedo_vis_dif	81	g		2d	g3b	surface albedo for visible ra-
						diation range, diffuse
albedo_vis_dir	79	g		2d	g3b	surface albedo for visible ra-
alsobs	72	σ		2d	a3p	albedo of bare ice and snow
415055	12	8		20	500	without melt ponds
alsoi	122	g		2d	g3b	albedo of ice
alsol	124	g		2d	g3b	albedo of land
alsom	71	g		2d	g3b	albedo of melt ponds
alsow	123	g		2d	g3b	albedo of water
ameltdepth	77	g	m	2d	g3b	total melt pond depth
ameltfrac	78	g		2d	g3b	fractional area of melt
						ponds on sea ice
amlcorac	89	$\overline{\mathrm{g}}$	W/m^2	2d	g3b	mixed layer flux correction
ao3	236	g		3d	g3b	mass mixing ratio of IPCC ozone
apmeb	137	g	$\rm kg/(m^2s)$	2d	g3b	vertical integral tendency of water
anmegl	221	$\overline{\alpha}$	$kg/(m^2s)$	2d	σ3b	P-E over land ice
apric	143	S or	$kg/(m^2s)$	2d 2d	goo ø3b	convective precipitation
apre	142	8 7	$kg/(m^2s)$	2d 2d	goo ơ3h	large scale precipitation
aprs	144	b g	$kg/(m^2s)$	2d 2d	g3b	snow fall
apro	134	o g	Pa	2d 2d	g3b	surface pressure
az0i	116	р р	m	2d 2d	g3b	roughness length over ice
az01	118	g	m	2d	g3b	roughness length over land
az0w	117	g	m	2d	g3b	roughness length over water
barefrac	70	g		2d	g3b	bare ice fraction
dew2	168	g	К	2d	g3b	dew point temperature at
	100	0		-4	80%	2m above surface
drain	161	$\overline{\mathbf{g}}$	$\mathrm{kg/(m^2s)}$	2d	g3b	drainage
evap	182	$\overline{\mathrm{g}}$	$kg/(m^2s)$	2d	g3b	evaporation
evapiac	113	$\overline{\mathrm{g}}$	$kg/(m^2s)$	2d	g3b	evaporation over ice
evaplac	115	$\overline{\mathrm{g}}$	$\mathrm{kg/(m^2s)}$	2d	g3b	evaporation over land
evapwac	114	$\overline{\mathrm{g}}$	$\rm kg/(m^2s)$	2d	g3b	evaporation over water
fage	68	g		2d	g3b	aging factor of snow on ice
friac	97	$\overline{\mathrm{g}}$		2d	g3b	ice cover fraction of grid box
geosp	129	g	$\mathrm{m}^2/\mathrm{s}^2$	2d	g3b	surface geopotential (orog-
						raphy)
glac	232	g		2d	g3b	fraction of land covered by
						glaciers
						table continued on next page

 Table 2.30:
 Output file echam — continued

	019	<i>c</i> r.		24	~?h	glacian danth
gra	215 150	g	111	20 21	gən	
lsp	152	\mathbf{S}		2d	sp	nat. logarithm of surface pressure
q	133	g		3d	gl	specific humidity
ares	126	g	W/m^2	2d	g3b	residual heat flux for melt-
1 00	-	0			0	ing sea ice
qvi	230	g	$\rm kg/m^2$	2d	g3b	vertically integrated water vapour
relhum	157	g		3d	g3b	relative humidity
runoff	160	$\overline{\mathrm{g}}$	$\mathrm{kg/(m^2s)}$	2d	g3b	surface runoff and drainage
sd	155	\mathbf{S}	1/s	3d	$^{\mathrm{sp}}$	divergence
seaice	210	g	·	2d	g3b	ice cover (fraction of 1- SLM)
siced	211	g	m	2d	g3b	ice depth
sicepdi	74	g	m	2d	g3b	ice thickness on melt pond
sicepres	76	g	W/m^2	2d	g3b	residual heat flux
sicendw	73	g	m	2d	ø3b	melt pond depth on sea ice
slm	172	o o		2d	o3b	land sea mask (1=land
6 ± m	112	ъ		24	800	0 = sea/lake)
sn	141	g	m	2d	g3b	snow depth
snacl	222	g	$\rm kg/(m^2s)$	2d	g3b	snow accumulation over land
snc	233	g	m	2d	g3b	snow depth at the canopy
sni	214	g	m	2d	g3b	water equivalent of snow on
		0			0	ice
snifrac	69	g		2d	g3b	fraction of ice covered with snow
snmel	218	$\overline{\mathrm{g}}$	$\mathrm{kg/(m^2s)}$	2d	g3b	snow melt
sofliac	94	g	W/m^2	2d	g3b	solar radiation energy flux over ice
sofllac	96	g	W/m^2	2d	g3b	solar radiation energy flux over land
soflwac	95	g	W/m^2	2d	g3b	solar radiation energy flux
			2			over water
srad0d	184	g	W/m^2	2d	g3b	incoming solar radiation en- ergy flux at top of atmo- sphere
srad0u	203	ß	W/m^2	2d	g3b	upward solar radiation en- ergy flux at top of atmo-
••	1 = 0		111/ 9		01	sphere
srad0	178	g	W/m^2	2d	gЗb	net solar radiation energy flux at top of atmosphere
sradl	86	$\overline{\sigma}$	W/m^2	2d	o3h	solar radiation at 200 hPa
grade	176	õ r	W/m^2	2d 2d	600 03P	net solar radiation energy
	110	б	vv / 111	2u	500	flux at surface

 Table 2.30:
 Output file echam — continued

sradsu	204	g	W/m^2	2d	g3b	upward solar radiation en- ergy flux at surface
sraf0	187	B	$\mathrm{W/m^2}$	2d	g3b	net solar radiation energy flux at top of atmosphere for
srafl	88	B	W/m^2	2d	g3b	solar sky conditions solar radiation energy flux at 200 hPa for clear sky con- ditions
srafs	185	g	W/m^2	2d	g3b	net solar radiation energy flux at surface for clear sky conditions
st	130	\mathbf{S}	Κ	3d	$^{\mathrm{sp}}$	temperature
svo	138	\mathbf{S}	1/s	3d	$^{\mathrm{sp}}$	vorticity
t2max	201	g	K	2d	g3b	maximum temperature at 2m above surface
t2min	202	g	К	2d	g3b	minimum temperature at 2m above surface
temp2	167	g	К	2d	g3b	temperature at 2m above surface
thvsig	238	g	Κ	2d	g3b	standard deviation of vir- tual potential temperature at half level klevm1
topmax	217	g	Pa	2d	g3b	pressure of height level of convective cloud tops
tpot	239	g	Κ	3d	g3b	potential temperature
trad0	179	g	W/m^2	2d	g3b	net thermal radiation en- ergy flux at top of atmo- sphere
tradl	85	g	W/m^2	2d	g3b	thermal radiation energy flux at 200 hPa
trads	177	g	W/m^2	2d	g3b	net thermal radiation en- ergy flux at surface
tradsu	205	g	W/m^2	2d	g3b	upward thermal radiation energy flux at surface
traf0	188	g	W/m^2	2d	g3b	net thermal radiation en- ergy flux at top of atmo- sphere for clear sky condi- tions
trafl	87	g	W/m^2	2d	g3b	thermal radiation energy flux at 200 hPa for clear sky conditions
trafs	186	B	W/m^2	2d	g3b	thermal radiation energy flux at surface for clear sky conditions
trfliac	91	B	W/m^2	2d	g3b	thermal radiation energy flux over ice table continued on next page

 Table 2.30:
 Output file echam — continued

trfllac	93	$\overline{\mathrm{g}}$	W/m^2	2d	g3b	thermal radiation energy
						flux over land
trflwac	92	$\overline{\mathrm{g}}$	W/m^2	2d	g3b	thermal radiation energy
						flux over water
tropo	237	g	Pa	2d	g3b	pressure of height level
						where tropopause is located
						according to WMO defini-
						tion
tsi	102	g	Κ	2d	g3b	surface temperature of ice
tsicepdi	75	g	Κ	2d	g3b	ice temperature on frozen
_		-			-	melt pond
tslm1	139	g	Κ	2d	g3b	surface temperature of land
tsurf	169	$\frac{e}{g}$	Κ	2d	g3b	surface temperature
tsw	103	g	К	2d	g3b	surface temperature of wa-
		0			0	ter
u10	165	g	m/s	2d	g3b	zonal wind velocity at 10m
						above surface
ustr	180	$\overline{\mathbf{g}}$	Pa	2d	g3b	zonal wind stress
ustri	104	g	Pa	2d	g3b	zonal wind stress over ice
ustrl	108	g	Pa	2d	g3b	zonal wind stress over land
ustrw	106	g	Pa	2d	g3b	zonal wind stress over water
v10	166	o o	m/s	2d	os≈ ø3h	meridional wind velocity at
	100	б	111/ 5	24	800	10m above surface
vdis	145	$\overline{\mathbf{g}}$	W/m^2	2d	g3b	boundary layer dissipation
vdisgw	197	g	W'/m^2	2d	g3b	gravity dissipation
vstr	181	$\frac{\sigma}{p}$	Pa	2d	g3b	meridional wind stress
vstri	105	o o	Pa	2d	g3b	meridional wind stress over
	100	0	1.0	- 4	80%	ice
vstrl	109	g	Pa	2d	g3b	meridional wind stress over
						land
vstrw	107	g	Pa	2d	g3b	meridional wind stress over
		0			0	water
wimax	216	g	m/s	2d	g3b	maximum wind speed at
		0	/ ~~		00.0	10m above surface
wind10	171	ø	m/s	2d	ø3b	wind velocity at 10m above
WINGIO	111	ъ	111/ 5	24	800	surface
พไ	193	ø	m	2d	ø3b	skin reservoir content
WS	140	o o	m	2d	g3b	soil wetness
WSmX	229	o o	m	2d	os≈ ø3h	field capacity of soil
xi	154	o o		2a 3d	800 ما	fractional cloud ice
vivi	150	S or	$k\sigma/m^2$	2d	61 03h	vertically integrated cloud
¥7 A T	100	б	115/111	20	800	ice
xl	153	g		3d	ളി	fractional cloud water
xlvi	231	<u></u>	kg/m^2	2d	g3b	vertically integrated cloud
		Ø	0/	- 4	00~	water

 Table 2.30:
 Output file echam — continued

2.4.2 Output file forcing

The forcing output file contains the instantaneous radiative aerosol forcing if it was required by the setting of the corresponding namelist parameters. In the table of the output variables, we denote the net short wave radiation flux under clear sky conditions by $F_{\text{sw,clear}}^{\top}$ at the top of any model layer and by $F_{\text{sw,clear}}^{\perp}$ at the bottom of this layer. Similarly, we symbolize the net short wave radiation flux under all sky condition at the top of any model layer by $F_{\text{sw,all}}^{\top}$ and by $F_{\text{sw,all}}^{\perp}$ at its bottom. The corresponding quantities for thermal radiation are denoted by $F_{\text{lw,clear}}^{\top}$, $F_{\text{lw,clear}}^{\perp}$, $F_{\text{lw,all}}^{\top}$, and $F_{\text{lw,all}}^{\perp}$, respectively. A superscript 0 is added if these quantities are meant for an atmosphere free of aerosols: $F_{\text{sw,clear}}^{\top,0}$, $F_{\text{sw,all}}^{\perp,0}$, $F_{\text{lw,clear}}^{\perp,0}$, $F_{\text{l$

$$T'_{sw} := (F_{sw,all}^{\top} - F_{sw,all}^{\perp})c_{h}$$
$$T'_{lw} := (F_{lw,all}^{\top} - F_{lw,all}^{\perp})c_{h}$$
$$T'_{sw}^{0} := (F_{sw,all}^{\top,0} - F_{sw,all}^{\perp,0})c_{h}$$
$$T'_{lw}^{0} := (F_{lw,all}^{\top,0} - F_{lw,all}^{\perp,0})c_{h}$$

From these quantities, we obtain the heating rate forcing or heating rate anomalies $\Delta T'_{sw}$ and $\Delta T'_{lw}$ for solar and thermal radiation:

$$\Delta T'_{sw} := T'_{sw} - T'^{0}_{sw} \Delta T'_{lw} := T'_{lw} - T'^{0}_{lw}$$

Table 2.31: Output file forcing. The type of the output fields can be g (instantaneous grid point variable), \overline{g} (mean value over the output interval of grid point variable), s (spectral space variable). The dimension is either 2d (variable depends on longitudes and latitudes only), 3d (variable depends on longitudes, latitudes, and levels).

Name	Code	Type	Unit	Dimension	Stream	Explanation
aps				see T	lab. 2.30	
d_aflx_lw	25	g	W/m^2	3d	forcing	$F_{ m lw,all}^{ op} - F_{ m lw,all}^{ op,0}$
d_aflx_lwc	26	g	W/m^2	3d	forcing	$F_{ m lw,clear}^{ op}-F_{ m lw,clear}^{ op,0}$
d_aflx_sw	15	g	W/m^2	3d	forcing	$F_{ m sw, all}^{ op} - F_{ m sw, all}^{ op, 0}$
d_aflx_swc	16	g	W/m^2	3d	forcing	$F_{ m sw, clear}^{ op} - F_{ m sw, clear}^{ op, 0}$
FLW_CLEAR_SUR	. 23	g	$\mathrm{W/m^2}$	2d	forcing	$F_{\rm lw,clear}^{\perp} - F_{\rm lw,clear}^{\perp,0}$ at the sur-
						face
FLW_CLEAR_TOP	21	g	$\mathrm{W/m^2}$	2d	forcing	$F_{\rm lw,clear}^{\top} - F_{\rm lw,clear}^{\top,0}$ at the top
						of the atmosphere
FLW_TOTAL_SUR	23	g	$\mathrm{W/m^2}$	2d	forcing	$F_{\rm lw,all}^{\perp} - F_{\rm lw,all}^{\perp,0}$ at the surface
						table continued on next page

FLW_TOTAL_TOP	22	g	W/m^2	2d	forcing	$F_{\rm lw,all}^{\top} - F_{\rm lw,all}^{\top,0}$ at the top of
						the atmosphere
FSW_CLEAR_SUR	13	g	W/m^2	2d	forcing	$F_{\rm sw,clear}^{\perp} - F_{\rm sw,clear}^{\perp,0}$ at the sur-
						face
FSW_CLEAR_TOP	11	g	W/m^2	2d	forcing	$F_{\mathrm{sw,clear}}^{\top} - F_{\mathrm{sw,clear}}^{\top,0}$ at the top
						of the atmosphere
FSW_TOTAL_SUR	14	$\overline{\mathrm{g}}$	W/m^2	2d	forcing	$F_{\rm sw,all}^{\perp} - F_{\rm sw,all}^{\perp,0}$ at the surface
FSW_TOTAL_TOP	12	g	W/m^2	2d	forcing	$F_{\rm sw,all}^{\top} - F_{\rm sw,all}^{\top,0}$ at the top of
						the atmosphere
gboxarea				see 7	Гаb. <mark>2.30</mark>	
geosp				see 7	Гаb. <mark>2.30</mark>	
lsp				see 7	Гаb. <mark>2.30</mark>	
netht_lw	27	g	K/d	3d	forcing	$\Delta T'_{ m lw}$
$\texttt{netht}_\texttt{sw}$	17	g	K/d	3d	forcing	$\Delta T'_{ m sw}$

 Table 2.31: Output file forcing — continued

2.4.3 Output file tdiag

Wind, temperature, and moisture tendencies due to various processes are collected in this output file. All the tendencies are instantaneous values the mean values of which may be calculated during a model run using the mean value stream. The actual content of the tdiag output file depends on the exact choice of output variables in the tdiagctl namelist (see Sec. 2.2.1.17).

Table 2.32: Output file tdiag. The type of the output fields can be g (instantaneous grid point variable), \overline{g} (mean value over the output interval of grid point variable), s (spectral space variable). The dimension is either 2d (variable depends on longitudes and latitudes only), 3d (variable depends on longitudes, latitudes, and levels).

Name	Code	Type	Unit	Dimension	Stream	Explanation
aps				see '	Tab. 2.30	
$dqdt_cloud$	36	g	$\mathrm{K/d}$	3d	tdiag	dq/dt due to processes com-
						puted by the subroutine
						cloud
$dqdt_cucall$	35	g	K/d	3d	tdiag	dq/dt due to processes com-
						puted by the subroutine
						cucall (convective clouds)
dqdt_vdiff	31	g	K/d	3d	tdiag	dq/dt due to processes com-
						puted by the subroutine
						vdiff (vertical diffusion)
$dtdt_cloud$	6	g	K/d	3d	tdiag	dT/dt due to processes com-
						puted by the subroutine
						cloud
$dtdt_cucall$	5	g	K/d	3d	tdiag	dT/dt due to processes com-
						puted by the subroutine
						cucall (convective clouds)
						table continued on next page

dtdt_hines	3	g	K/d	3d	tdiag	dT/dt due to processes com- puted by the Hines gravity
dtdt_rheat_lw	72	g	K/d	3d	tdiag	wave parametrization dT/dt due to radiative heat- ing caused by radiation in
dtdt_rheat_sw	62	g	K/d	3d	tdiag	the thermal spectral range dT/dt due to radiative heat- ing caused by radiation in
dtdt_sso	4	g	K/d	3d	tdiag	the solar spectral range dT/dt due to gravity wave drag
dtdt_vdiff	1	g	K/d	3d	tdiag	dT/dt due to processes com- puted by the subroutine vdiff (vertical diffusion)
dudt_cucall	15	g	K/d	3d	tdiag	du/dt (zonal wind compo- nent) due to processes com- puted by the subroutine
dudt_hines	13	g	K/d	3d	tdiag	du/dt (zonal wind compo- nent) due to processes com- puted by the Hines gravity
dudt_sso	14	g	K/d	3d	tdiag	wave parametrization du/dt (zonal wind component) due to gravity wave drag
dudt_vdiff	11	g	K/d	3d	tdiag	du/dt (zonal wind compo- nent) due to processes com- puted by the subroutine udiff (vortical diffusion)
dvdt_cucall	25	g	K/d	3d	tdiag	dv/dt (meridional wind component) due to pro- cesses computed by the subroutine cucall (convec- tive clouds)
dvdt_hines	23	g	K/d	3d	tdiag	dv/dt (zonal wind compo- nent) due to processes com- puted by the Hines gravity wave parametrization
dvdt_sso	24	g	K/d	3d	tdiag	dv/dt (zonal wind component) due to gravity wave drag
dvdt_vdiff	21	g	K/d	3d	tdiag	du/dt (zonal wind compo- nent) due to processes com- puted by the subroutine vdiff (vertical diffusion) table continued on next page
						table commuted on next page

Table 2.32: Output file tdiag — continued

$dxidt_cloud$	56	g	K/d	3d	tdiag	$dx_{\rm i}/dt$ (cloud water ice) due
						to processes computed by
						the subroutine cloud
dxidt_vdiff	51	g	K/d	3d	tdiag	$dx_{\rm i}/dt$ (cloud water ice) due
						to processes computed by
						the subroutine vdiff (ver-
						tical diffusion)
$dxldt_cloud$	46	g	K/d	3d	tdiag	$dx_{\rm l}/dt$ (cloud water) due to
						processes computed by the
						subroutine cloud
dxldt_vdiff	41	g	K/d	3d	tdiag	$dx_{\rm l}/dt$ (cloud water) due to
						processes computed by the
						subroutine vdiff (vertical
						diffusion)
gboxarea				see	e Tab. <mark>2.30</mark>	
geosp	see Tab. 2.30					
lsp	see Tab. 2.30					
st	see Tab. 2.30					
tm1				see	e Tab. <mark>2.30</mark>	

Table 2.32: Output file tdiag — continued

2.5 Run scripts

2.5.1 Systematic technical testing of ECHAM6

In many cases, scientists wish to modify the ECHAM6 code for their special applications. Before any "production" simulation can be started, the modified ECHAM6 version has to be tested thoroughly. The purpose of this collection of korn shell scripts is to provide a systematic and easy to use test bed of the ECHAM6 code on a technical level. These test scripts perform very short simulations in the T31L39 resolution over 12 time steps in different model configurations in order to trap errors in the code that cause technical malfunctions. However, this kind of tests can not detect any scientific failure or evaluate the scientific quality of the results. The tests rely on a comparison of the output of 12 time steps using the cdo diff tool. We apply the term that the results of two simulations are "bit identical" if the cdo diff command does not find differences between all netcdf or GRIB output files of these two simulations. This means that the output on the standard output device of these two simulations is allowed to be different, e.g. by new messages for a newly built in submodel facility. Furthermore, it is only checked whether the netcdf representation of the output of the two simulations is bit-identical but not whether all variables during the run of the ECHAM6 program have bit identical values in both simulations. In addition to tests on one model version that will be called the test version, such a test version of the model can be compared to a reference version in the so-called update test.

The package of scripts performing these tests can be used on various computers without queueing system and can be modified in such a way that individual namelists and input data can be provided to the test and reference model.

The following tests and combinations of them can be performed by the test tool (including checkout and compilation of the model which is always performed):

- **compile:** This is not a real test. The respective test version is checked out from the svn version control system if necessary and compiled, but no run is performed.
- single test: In this test, the test version is (checked out, compiled, and) run for 12 time steps. The test is successful if the program does not crash.
- parallel test: For this test, a simulation of the test ECHAM6 version over 12 time steps is performed on 1 and 2 processors, respectively, and the result is compared by the cdo diff tool for every time step. The test simulation on a single processor is also performed using the parallel mode of the program. It is therefore not a test for the version of ECHAM6 without message passing interface (mpi). With this kind of test, possible parallelization errors can be detected like the usage of variables or fields which were not sent to all processors. The result of these two simulations should be bit identical. On massive parallel machines, using a lot of processors distributed over several nodes further problems may occur even if this test is passed. Such problems are often either subtle errors in the usage of mpi or compiler problems. Supplemental tests have to be performed on a later stage when the program is ported to such a platform.
- **nproma test:** The section of the globe that is present on a processor after distribution of the data onto the processors, is vectorized by blocks of maximum length **nproma**. This means that even if only one processor is used surface fields of the earth do not simply have two dimensions of the size of longitudes n_{lon} and latitudes n_{lat} but are reshaped to **ngpblks** blocks of maximum length **nproma**. Since **nproma** may not be a divisor of $n_{\text{lon}} \times n_{\text{lat}}$, there may be a last block that contains fewer than **nproma** elements. This may lead to problems in the code, if such non-initialized elements of the last block are used accidentally. The nproma test traps such errors by using two different nproma lengths of 17 and 23 which are both not divisors of n_{lon} in the T31 resolution in the test simulations and comparing the results of 12 time steps. The results should be bit-identical.
- rerun test: ECHAM6 has the possibility to split up a long term simulation into several runs of a shorter time period and to restart the model at a certain date. The results after restart are bit identical with those of a simulation without restart. There is a large variety of errors associated with a failure of the restart facility which can not all be trapped by this test like wrong scripting of the use of transient boundary conditions, but to pass this test is a minimum requirement. The base simulation starts at 1999-12-31, 22:00:00h, writes a restart file at 23:45:00h. It stops after a total of 12 time steps. The rerun files are used to restart the program and to complete the 12 times steps. The five time steps after restart are then compared with the simulation that was not interrupted. The results should be bit-identical.
- **update test:** This test compares the results of two simulations with different model versions (test version versus reference version). Under certain circumstances, bit-identical results may be required in this test.
- submodel off test: The above standard tests are all run in a model configuration that comprises submodels (configuration similar to the CMIP-5 simulations). In some cases, one may be interested in a configuration without any submodel. This test tries to run ECHAM6 without any submodel. If two revisions are compared, the results of this model configuration are also compared for the test and reference revision.

2.5.1.1 System requirements

The ECHAM6 test scripts can be adapted to UNIX computers without queuing system. The automatic configure procedure for the model compilation has to work and the environment has to provide the possibility to run programs using message passing interface (mpi). The initial and boundary condition data of ECHAM6 have to be directly accessible in some directory. If there is no direct access to the version control system of echam (svn), individual model versions on the computer may be used in the tests, but the path name of the location of these model versions has to follow the below described conventions.

2.5.1.2 Description of the scripts

In figure 2.1, we present the flow chart of the scripts performing the test simulations of ECHAM6 and the comparison of the results. The scripts need some additional variables that are written to files by the master script test_echam6.sh and read from these files by the dependent scripts. The variables can be set in the master script as described in Tab. 2.33. The corresponding files must not be modified by hand. The file c.dat contains the module name of the C compiler, the file fortran.dat contains the module name of the fortran compiler, the file mpirun.dat contains the absolute path and name of the command to start programs using message passing interface (mpi), the file outfiletype.dat contains a number associated with the type of the output files (1 for GRIB format and 2 for netcdf format).

- **test_echam6.sh:** This script contains a definition part where all the path names and the model version for the test and reference model must be set. It is also the place at which the key word for the kind of test is defined. It calls the scripts for downloading the respective model versions from svn if they are not yet present on your computer and calls the compile and test run scripts.
- **compile_echam6.sh:** This script downloads the respective model version from the revision administration system svn if it is not yet present on your computer and compiles the model. Compilation can be forced. Note that the compiler options depend on the settings in the input scripts of the configure procedure and may be different from revision to revision. Different compiler options may lead to numerically different results although the algorithms in the code are identical!
- test_mode.sh: This family of scripts performs the various simulations and the comparison of the results. The mode is one of single, parallel, nproma, rerun, update, submodeloff, parallelnproma, parallelnpromarerun, parallelnpromarerunsubmodeloff, all.
- test_echam6_run.sh: General run script for echam.
- test_echam6_{test,reference}_links.sh: Script that provides the links to all input and boundary condition files needed for simulations with ECHAM6. In the standard version, the two scripts are identical but allow the user to apply different files for the reference and test model, respectively.
- test_echam6_{test,reference}_namelists.sh: These scripts generate the namelists for the reference and test model separately. In the standard version, these two scripts are identical. They are useful if the introduction of a new submodel requires a namelist for the test model that is different from the namelist used for the reference model.

test_diff.sh: This script performs a comparison of all output files that are common to two test simulations. It also gives a list of outputfiles that are not common to the two test simulations. If there are no results written into an output file during the 12 time steps of the test simulations, the comparison of the files with the cdo diff command leads to an error message that the respective file structure is unsupported.

2.5.1.3 Usage

The scripts should be copied into a directory that is different form the original ECHAM6 directory so that you can savely change them without overwriting the original. The files *.dat must not be changed but contain values of "global" variables to all scripts. They are described in section 2.5.1.2. The variables that have to be modified in test_echam6.sh are listed in table 2.33. Note that the revision specific path of the ECHAM6 model will be automatically composed as ${REF_DIR}/{REF_BRANCH}_rev{REF_REVISION}$ for the reference model and as {TEST_DIR}/\${TEST_BRANCH}_rev\${TEST_REVISION} for the test model, respectively. Inside these directories, the echam model sources are expected to be in a revision independent directory **\$**{REF_BRANCH} and **\$**{TEST_BRANCH}, respectively. The simulation results will be in directories {REF_ODIR}/0000nrev\${REF_REVISION} and \${TEST_ODIR}/0000nrev\${TEST_REVISION} for the reference and test model, respectively. The number **n** is the number of the experiment. If in such a directory, an output file *.err exists, the test tool assumes that the simulation already exists and does not perform a new simulation. The results are not removed once a test is performed in order to avoid the repetition of the same test simulation over and over again (e.g. for the reference model). If experiments have to be repeated, the corresponding directory has to be removed by hand.

The test is then started by typing ./test_echam6.sh in the directory of the test scripts. to input and boundary condition data and the input namelists The links for the model revisions can be modified for the reference and the test model intest_echam6_{reference,test}_links.sh dividually by editing the scripts and test_echam6_{reference,test}_namelists.sh, respectively. This makes this collection of test scripts rather flexible: It may be used even for models containing extensions of ECHAM6 like ECHAM6-HAM or ECHAM6-HAMMOZ.

Table 2.33: Variables of test_echam6.sh that have to be modified by the user of the test scripts. The variables are listed in the order of their appearance in test_echam6.sh. Note that the revision specific path of the ECHAM6 model will be automatically composed as \${REF_DIR}/\${REF_BRANCH}_\${REF_REVISION} for the reference model and as \${TEST_DIR}/\${TEST_BRANCH}_\${TEST_REVISION} for the test model, respectively.

Absolute path to directory where test scripts are located.
File type of output files. Set to 1 for GRIB format out-
put files and to 2 for netcdf output files. It is recommended to test ECHAM6 with both output formats.
If a module has to be loaded in order to use the cor- rect fortran compiler version, give the fortran compiler module here.

CCOMPILER	If a module has to be loaded in order to use the correct
	C compiler version, give the C compiler module here.
MPIRUN	Absolute path and command to run a program using
	message passing interface (mpi).
TEST DIR. REF DIR	Absolute base path to directory containing model ver-
	sions of test and reference model respectively. Even if
	the model source code is leaded from sum this directory.
	the model source code is loaded from svir, this directory
	nas to exist.
TEST_BRANCH, REF_BRANCH	name of branch of test and reference model in the re-
	vision control system svn a revision of which has to be
	tested, respectively.
TEST_REVISION, REF_REVISION	revision number of test and reference model revision,
	respectively.
TEST_SVN, REF_SVN	URL address of test and reference model branch in svn
	system, respectively. Can be omitted if model source
	code is on local disk.
TEST ODIR BEF ODIR	Absolute path where test scripts can open directories
	for simulation results of test and reference model re-
	spectively. This directory has to exist
	LOOND true former commilation with LOOND follow
LCOMP	LCUMP=.true. forces compliation, with LCUMP=.false.
	compilation is done only if executable is not existing.
MODE	One of compile, single, parallel,
	${\tt nproma}, {\tt rerun}, {\tt update}, {\tt submodeloff},$
	parallelnproma, parallelnpromarerun,
	parallelnpromarerunsubmodeloff, all in order
	to perform the corresponding tests.

Table 2.33: test_echam6.sh — continued

If some step or test was not successful, more information about the possible error is given in the protocol files that are written for each step. If the model was checked out from the svn system, there is a protocol file checkout.log of the checkout procedure in ${REF_DIR}/{REF_BRANCH}_{REF_REVISION}$ for the reference model and {TEST_DIR}/\${TEST_BRANCH}_\${TEST_REVISION} for the test model, respectively. The configure procedure and compilation is protocolled inside the \${BRANCH} directory of the aforementioned paths in the files config.log and compile.log, respectively. Information about each simulation can be found inside the directories \${REF_ODIR}/0000nrev\${REF_REVISION} and \${TEST_ODIROOOOnrev\${TEST_REVISION} with n being the number of the test case indicated during the test run procedure on the screen, respectively. In these directories, the standard and standard error output of the ECHAM6 program can be found in the 0000nrev\${REF_REVISION}. {log,err} and the 0000nrev\${TEST_REVISION}. {log,err} files, respectively. The detailed result of the cdo comparison for each output file is also in these output directories in respective files diff*.dat. On the screen, only the most important steps and results are displayed. A certain test is successfully passed if the comparison for each file results in the message "0 of r records differ" where r is the number of records.

2.5.2 Automatic generation of runscripts for ECHAM6 on blizzard

There is a tool for the automatic generation of standard run scripts that serve to repeat some basic CMIP5 experiments in two spatial resolutions. These scripts may also serve as a starting point for more specialized experiments. These run scripts only work on blizzard.dkrz.de of the DKRZ computing centre and rely on certain conventions concerning directory structures and file names. A description of this tool can be found in the file contrib/generate-scripts/README_ECHAM6 of the main echam directory.

2.5.2.1 Directory structure and file systems on blizzard.dkrz.de

Several file systems are accessible from the supercomputer platform blizzard.dkrz.de (blizzard) that all serve for different purposes. (1) There is the \$HOME file system (located in /pf) that has a quota per user (8GB) and regular backups are available. This file system is good for holding the source code of the echam model and the run scripts that are used to perform a computer experiment. (2) There is a \$SCRATCH file system (located in /scratch) with very fast i/o and a limited lifetime of data of 14 days currently. There is no backup available and deletion of files is automatic. This file system is good for the primary output from a model that will be treated by some postprocessing immediately after the run. It is not used by the automatically generated run scripts mentioned above. (3) There is the /work/{PROJECT} file system that also has fast i/o possibilities. There is no backup available, but data are not automatically deleted. There is a quota per project and NOT per user. Reasonable use of this file system requires the coordination of your work with the other members of this project. Although data are not automatically deleted, it is NOT an archive. It is meant for frequently accessed data only. (4) There are two kinds of archive systems: /hpss/arch and /hpss/doku, both accessible by pftp. The automatically generated run scripts make use of the following directories:

/home/zmaw/{USER_ID}/{REPOS_NAM}: Source code of ECHAM6. The {REPOS_NAM} is the directory echam-6.1.00 for example.

/home/zmaw/{USER_ID}/{REPOS_NAM}/experiments: In this directory, a subdirectory will be created for each experiment. This subdirectory will contain a directory scripts in which you will find the run scripts and postprocessing scripts that were automatically generated for a particular experiment. The path contains your DKRZ user-id and a {REPOS_NAM} that can be chosen freely.

/work/{PROJECT}/{USER_ID}/{REPOS_NAM}/experiments: In this directory, a subdirectory
will be created for the output of each experiment. Be careful to move your results into the
archive as soon as you do not work with them regularly.

2.5.2.2 Generation of run scripts

Go into the directory contrib/generate-scripts of your ECHAM6 source code and edit the file generate-echam.sh. There, you only have to fill in the variables listed in Tab. 2.34.

Variable Explanation USER_ID user identification number of your account at DKRZ (account num		Cable 2.34: Variables needed for the automatic generation of run scripts	
ber)	Variable USER_ID	Explanation user identification number of your account at DKRZ (account num ber)	L-

GROUP_ID	project number of the project the work space of which you like to
	use for the interim storage of your simulation results
REPOS_NAM	The name of the directory containing the ECHAM6 source code. This
	directory has to be in your \$HOME directory
EXP_ID	Your personal experimenter identification number. It is composed
	of 3 letters and a four digit number. See:
	http://svn.zmaw.de/dokuwiki/doku.php?id=listofids:list_of_experimenter_ids
EXPNAME	The experiment name determines the kind and resolution of the
	the experiment you are performing. Currently, only four different
	experiments are possible: amip-LR or amip-MR (amip experiments
	at either T63L47 (LR) or T63L95 (MR) spatial resolution), and
	sstClim-LR or sstClim-MR (experiment using climatological sea
	surface temperature and sea ice derived from a 500–year mean of the
	corresponding coupled pre-industrial control simulation at T63L47
	(LR) or T63L95 (MR) spatial resolution)
ECHAM_EXE	Name of echam executable (normally its echam6)
ACCOUNT	Account (project) number under which computing time should be
	accounted (can be different of GROUP_ID)

Table 2.34: automatic scripts — continued

2.6 Postprocessing

The ECHAM6 output is not directly suitable for visualization since some of the output fields are in the spectral space (3d-temperature, vorticity, divergence and the logarithm of the surface pressure). Furthermore, monthly or yearly mean values are more suitable for a first analysis of a simulation than instantaneous values at a certain time step. There is a standard postprocessing tool with which standard plots can be generated. This postprocessing tool also produces tables of key quantities. The postprocessing consists of two steps: (1) preparation of the ECHAM6 output data, (2) generation of the plots and tables.

2.6.0.3 Software requirements

The postprocessing scripts require the installation of the so–called "afterburner" that performs the transformation of spectral variables into grid point space and the interpolation to pressure levels, the installation of the cdo climate data operator package for mean value calculations and general manipulation of the data, the installation of the ncl NCAR graphics tool to generate the plots, and of the IATEX program package in order to arrange the viewgraphs in one document.

2.6.0.4 Preparation of the ECHAM6 output data

The output data of an ECHAM6 simulation can be prepared for the postprocessing tool by the use of the after.sh script. The prerequisite is to have a simulation that was conducted over a time period of at least one complete year. The output has to be stored in monthly files. These files can contain either monthly mean values or (mean) values over smaller time intervals. It is assumed that the arithmetic mean of the output variables over the time steps in these monthly files is a good estimate of the monthly mean value. Several variables have to be modified by the user in the after.sh script (see Tab. 2.35).

Variable	Explanation
after	Location and name of the executable of the afterburner, e.g.:
	/client/bin/after
cdo	Location and name of the executable of the climate data operators,
	e.g.: cdo if no search path is needed
datdir	Absolute path to the folder in which the original ECHAM6 simulation
	output files are stored
exp	Experiment name as defined in the variable out_expname of the
	runctl namelist (see Tab. 2.12)
filename_suffix	The extension of the monthly ECHAM6 (standard) output files
	after the number of the months (including leading dots), e.g.:
	.01_echam.nc. The output files can be in either GRIB format (no
	extension) or netcdf format (including the extension .nc).
first_year	First year of simulation data
last_year	Last year of simulation data
out_format	should be set to 1 for GRIB output format of after.sh (standard)
workdir	Absolute path to which the output files of after.sh are written

The output files contain monthly mean values over all simulated years as given by the first_year and last_year variable. There are 12 output files for the 3-d variables with names ATM_\${exp}_\${first_year}-\${last_year}_MMM with MMM describing the month and 12 output files for the 2-d surface variables with names BOT_\${exp}_\${first_year}-\${last_year}_MMM. These files are the input to the program that actually generates the tables and view graphs.

2.6.0.5Generation of plots and tables

The plots and tables are generated by the script POSTJOB in the case of a comparison of one model simulation with era40 data or by the script POSTJOBdiff in the case of the comparison of two different experiments. Again, some variables have to be set by the user directly in the scripts. In the case of the script POSTJOB the variables are listed in Tab. 2.36, in the case of **POSTJOBdiff**, the variables are listed in Tab. 2.37.

Table 2.36: Variables of POSTJOB in alphabetical order

	1
Variable	Explanation
ATM	= 1 if viewgraphs of atmosphere fields are desired, $= 0$ otherwise
atm_RES	Spectral resolution of the model, e.g. 31 for the T31 spectral resolution
BOT	= 1 if viewgraphs of surface fields are desired, $= 0$ otherwise
COMMENT	Any comment that describes your experiment (will appear on the plots)
EXP	Experiment name as defined in the variable out_expname of the runctl
	namelist (see Tab. 2.12)
LEV	Number of levels
oce_RES	Resolution of the ocean, e.g. GR30 for the GROB 30 resolution.
LOG	only if LOG_* files exist, currently not implemented in after.sh
	table continued on next page

Table 2.35:	Variables	of after.	.sh in	alphabetical	order

Table 2.36: POSTJOB — continued

PRINTER	name of black and white printer $= 0$ if printing is not desired CAUTION:
	If the printer PRINTER exists, printing is automatic without asking the user
	again
	again:
PRINIERC	name of color printer, $= 0$ if printing is not desired. CAUTION: If the
	printer PRINTERC exists, printing is automatic without asking the user again!
TAB	= 1 if tables are desired, $= 0$ otherwise
TYP	type of plots. There are 17 possible types: ANN: annual mean values (they
	will be calculated from the monthly means by weighting with the length
	of the respective months). Seasonal mean values for the seasons DJF (De-
	cember, January, February), MAM (March, April, May), JJA (June, July,
	August), SON (September, October, November). In the case of the seasonal
	mean values, the length of the respective months is not taken into account
	when the mean values over the corresponding three months are calculated.
	One of the twelve months of a vear (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
	SEP OCT NOV DEC) The seasonal and monthly (and also annual) mean
	values are "climatological" mean values over possibly several years
WORKDIR	Path to the directory where the monthly means prepared by the after sh
WOILINDIIL	script are stored
37374	First simulated mean
ΥΥ⊥	First simulated year
YY2	Last simulated year

 Table 2.37: Variables of POSTJOBdiff in alphabetical order for comparison of simulation 1

 with simulation 2

Variable	Explanation
ATM	= 1 if viewgraphs of atmosphere fields are desired, $= 0$ otherwise
atm_RES	Spectral resolution of the model, e.g. 31 for the T31 spectral resolution
BOT	= 1 if viewgraphs of surface fields are desired, $= 0$ otherwise
COMMENT	Any comment that describes your experiment (will appear on the plots)
AEXP	Experiment name as defined in the variable out_expname of the runctl
	namelist (see Tab. 2.12) for simulation 1
AYY1	First simulated year of simulation 1
AYY2	Last simulated year of simulation 1
BEXP	Experiment name as defined in the variable out_expname of the runctl
	namelist (see Tab. 2.12) for simulation 2
BYY1	First simulated year of simulation 2
BYY2	Last simulated year of simulation 2
LEV	Number of levels
oce_RES	Resolution of the ocean, e.g. GR30 for the GROB 30 resolution.
LOG	only if LOG_* files exist, currently not implemented in after.sh
PRINTER	name of black and white printer, $= 0$ if printing is not desired. CAUTION:
	If the printer PRINTER exists, printing is automatic without asking the user
	again!

PRINTERC	name of color printer, $= 0$ if printing is not desired. CAUTION: If the
	printer PRINTERC exists, printing is automatic without asking the user again!
TAB	= 1 if tables are desired, $= 0$ otherwise
TYP	type of plots. There are 17 possible types: ANN: annual mean values (they
	will be calculated from the monthly means by weighting with the length
	of the respective months). Seasonal mean values for the seasons DJF (De-
	cember, January, February), MAM (March, April, May), JJA (June, July,
	August), SON (September, October, November). In the case of the seasonal
	mean values, the length of the respective months is not taken into account
	when the mean values over the corresponding three months are calculated.
	One of the twelve months of a year (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
	SEP, OCT, NOV, DEC). The seasonal and monthly (and also annual) mean
	values are "climatological" mean values over possibly several years.
WORKDIR	Path to the directory where the monthly means prepared by the after.sh
	script are stored

The results are stored in several files in the directory ${WORKDIR}_{TYP}$. The tables are in the files tabelle_ ${EXP}_{{YY1}-{YY2}_{TYP}[.ps]}$ in either ASCII or postscript (ending .ps) format. The viewgraphs are stored in the files ATM_ ${TYP}_{{EXP}}.[tex,ps],$ ATMlola_ ${TYP}_{{EXP}}.[tex,ps],$ and BOT_ ${TYP}_{{EXP}}.[tex,ps]$. The LATEX files *.tex combine several encapsulated postscript format viewgraphs in one document.

Figure 2.1: Flow chart of test scripts. The main script in the red box has to be modified by the user. The scripts in the green boxes can be modified in order to use different model settings than the standard ones for test or reference model, respectively. The script in the blue box depends on the test mode and is one of *mode*=single, parallel, nproma, rerun, submodeloff, parallelnproma, parallelnpromarerun, parallelnpromarerunsubmodelloff, update, all. The scripts with *mode*=parallelnpromarerun, parallelnpromarerunsubmodeloff, and all need an additional script mve to move the rerun files to files with new names.

Chapter 3

Technical Documentation

3.1 Parallelization

3.1.1 General description

The parallel version of ECHAM is based on a domain distribution approach, i.e. every processor only handles a limited domain of the whole globe, and only keeps the respective part of the data. In order to facilitate the distribution, the whole domain is divided into nproca times nprocb domains with nproca being the number of divisions in north-south direction and nprocb the number of divisions in east west direction. In order to achieve a good load balance in the shortwave radiation (and chemical reaction) calculations, each processor treats two parts of the globe, located opposite to each other. So half of the gridpoints of each processor will be on the daytime and the other half on the nighttime side on the globe.

Parts of the calculations within ECHAM are performed in spectral space. For these calculations the spectral coefficients are distributed over processors as well. In order to perform the Fourier and Legendre transformations - which are global operations in gridpoint and spectral space as well - two further data distributions are used, named Fourier and Legendre space. The data distributions are sketched in Figure 3.1, a more detailed discription is given in Section 3.1.3.

Figure 3.1: Data distribution

The data transpositions, i.e. the redistribution of data in order to perform the global Fourier and Legendre transformations are performed just before and after these transformations. All other calculations require almost no further communication (besides a few global sums) because the data required for the operations is present on the respective processor. A recipe for writing parallel routines is given in Section 3.1.2.

3.1.2 Recipe for writing or modifying parallel routines

3.1.2.1 Physical parameterizations

The physical parameterization routines (called from the routines gpc or physc) work only on one block of grid cells of consecutive longitudes. This block can be too short to accomodate all grid cells of one latitude of it may combine grid cells of more than one latitude into one block. The length of the block can be chosen arbitrarily and is called nproma. The loop over the blocks is performed in a higher level routine (scan1) and the actual block length is passed to the respective subroutines as kproma.

"Physics" computations at different model columns are generally independent from each other and do not require any communication between processors. Furthermore most computations do not depend on the absolute location on the globe. If these two conditions are fullfilled no further action is required for the parallel model version and a physical parameterization routine may remain unchanged. Loops over the grid cells in one block are performed by the following statement:

DO i=1, kproma

... END DO

Special care must be taken if:

1. The routines are not called within the loop over blocks.

In this case the number of longitudes and latitudes handled by the processor can be accessed by reference to the components nglon and nglat of the variable local_decomposition in module mo_decompose (cf. Section 3.1.3.2). A typical loop over blocks and block elements is given below. dc%ngpblks and dc%nproma (dc%npromz) are also used to specify the dimensions of local arrays.

```
use mo_decomposition, only: dc => local_decomposition
real(dp) :: xlocal (dc%nproma, dc%ngpblks) ! declare a local array
. . .
DO j=1, dc%ngpblks-1
                                        ! loop over local block
  DO i=1, dc%nproma
                                        ! loop over grid cells in block
    . . .
    xlocal (i,j) = 0._dp
                                        ! access a local array
    . . .
  END DO
END DO
DO i=1, dc%npromz
   xlocal (i,dc%ngpblks) = 0._dp
   . . .
END DO
```

2. An index to a global field is required or the absolute position on the globe must be known. These conditions are met in the short-wave radiation part, where the zenith angle of the sun must be calculated, or if the horizontal area covered by a column must be known, for instance in budget calculations.
3.1. PARALLELIZATION

Every processor handles two distinct parts of the domain on opposite sides of the globe. For this reason the first dc%ngpblks/2 blocks are located on the northern hemisphere whereas the remaining lines are located on the southern hemisphere. The local as well as the global latitude generally runs from North to South, but some of the global arrays (for instance Gaussian weights) are still stored in so called ping-pong order (with one latitude line in the northern hemisphere being followed by the respective latitude line from the southern hemisphere).

For routines called within gpc or physc the local latitude index jglat and the global pingpong index igprow are stored in the module variable nrow(2) in module mo_control:

nrow(1) = igprow ! global ping pong index nrow(2) = jlat ! local index north -> south

3. Global sums are required.

Global sums should be avoided, in order to prevent communication between processors. In the case that global operations cannot be avoided, routines to derive global (or zonal) sums may be found in module mo_global_op (cf. Section 3.1.6).

4. Dependencies between horizontal gridpoints exist.

Dependencies between horizontal gridpoints within the physical routines should be avoided, in order to prevent communication between processors. If possible these calculations should be done at locations in the program where suitable data transpositions have already been performed or in dedicated routines (for instance in the semi-Lagrangian transport routine).

5. Input and Output

Input and Output is addressed in Section 3.1.2.2

3.1.2.2 Input/Output

Two things must be considered when files are read or written:

- In parallel mode, only one processor is allowed to perform I/O. This processor will also be called I/O processor. The logical variable p_parallel_io (from mo_mpi) has the value .true. on the I/O processor only and has the value .false. on all other processors. In single processor mode (indicated by a value .false. of p_parallel) the data is merely read or written.
- 2. The values of variables read by the I/O processor must be communicated to the other processors. If all processors are supposed to receive the same information the broadcast routine p_bcast (from mo_mpi) must be called. In case of two or three dimensional arrays each processor only holds the information relevant for its subdomain. In this case the I/O must be performed on a global variable (generally only allocated on the processor which performs I/O) different from the local variable which finally is used for computations. In order to communicate the data to processors in gridpoint space the routine scatter_gp from module mo_transpose must be called. Similar routines exist in order to distribute data in spectral space (scatter_sp) or do gather the data from the other processors (gather_gp, gather_sp). Generic interfaces are provided for the broadcast and gather or scatter routines (cf. Section 3.1.4) for different data types and array dimensions.

Below some examples are given. Note that generally I/O is not performed directly, but routines are provided for reading and writing specific formats (Grib, Netcdf).

1. Read and broadcast some information

The broadcast routine requires p_{io} as actual parameter in order to identify the processor which sends the information, i.e. the processor which performs I/O.

```
USE mo_mpi, ONLY: p_parallel, p_parallel_io, p_broadcast, p_io
IF (p_parallel) THEN
IF (p_parallel_io) THEN
READ x
ENDIF
CALL p_bcast (x, p_io)
ELSE
READ x
ENDIF
```

2. Read and scatter some information

In this example x is a 3 dimensional field (kbdim, levels, ngpblks, where kbdim is the maximum length of block) which finally stores the local information on each processor. Information on the data distribution of all processors is provided in the variable global_decomposition and must be passed to the scatter and gather routines.

```
ONLY: p_parallel, p_parallel_io, p_io
USE mo_mpi,
USE mo_transpose, ONLY: scatter_gp
USE mo_decompose, ONLY: gl_dc => global_decomposition, &
                        dc
                              => local_decomposition
REAL, POINTER :: tmp (:,:,:)
                                             ! global read buffer
                     (dc%nproma, dc%nlev, dc%ngpblks)
REAL
              :: x
                                             ! in parallel mode:
IF (p_parallel) THEN
 NULLIFY(tmp)
                                      ! nullify global array not used
  IF(p_parallel_io) THEN
    ALLOCATE (tmp(dc%nlon,dc%nlev,dc%nlat)) ! allocate global array used
    READ x
                                             ! read information
 ENDIF
 CALL scatter_gp(tmp, x, gl_dc)
                                             ! scatter
  IF (p_parallel_io) DEALLOCATE (tmp)
                                             ! deallocate global array
ELSE
                                             ! in single processor mode:
                                             ! merely read
   READ x
ENDIF
```

3. Gather and write some information

This example is very similar to the previous one.

USE mo_mpi, ONLY: p_parallel, p_parallel_io, p_io USE mo_transpose, ONLY: gather_gp USE mo_decompose, ONLY: gl_dc => global_decomposition, &

```
dc
                               => local_decomposition
REAL, POINTER :: tmp (:,:,:)
                                              ! global read buffer
REAL
                     (dc% nglon, dc% nlev, dc% nglat)
              :: x
IF (p_parallel) THEN
                                             ! in parallel mode:
 NULLIFY(tmp)
                                      ! nullify global array not used
  IF(p_parallel_io) THEN
    ALLOCATE (tmp(dc%nproma,dc%nlev,dc%ngpblks)) ! allocate
                                      !global array used
  ENDIF
  CALL gather_gp(tmp, x, gl_dc)
                                              ! gather
  IF(p_parallel_io) THEN
    WRITE x
                                              ! write information
                                              ! deallocate global array
    DEALLOCATE (tmp)
  ENDIF
ELSE
                                              ! in single processor mode:
   WRITE x
                                              ! merely write
ENDIF
```

3.1.3 Decomposition (mo_decompose)

The decomposition is handled by the module mo_decompose which is described in this section. The domain decomposition is performed by a call to the routine decompose with the following parameters:

```
global_dc
```

Derived decomposition table (output).

nlat, nlon, nlev

These parameters determine the size of the global domain: **nlat** is the number of latitudes (which must be even), **nlon** is the number of longitudes and **nlev** is the number of levels.

nm, nn, nk

These parameters give the number of wavenumbers in spectral space. Currently only triangular truncation is allowed with nm = nn = nk.

nproca, nprocb

Following the ideas of the Integrated Forecast System (IFS) of the European Centre of Midium-Range Weather Forcast (ECMWF) the total domain is covered by nproca times nprocb processors. In Gridpoint space the domain is divided into nprocb subdomains in east-west direction and 2 times nproca subdomains in north-south directions. Details are given below in the subsections of this paragraph.

The default decomposition may be modified by the following optional parameters:

norot

In order to improve load balancing in the shortwave radiation part half of the gridpoints of each processor should be exposed to the sun whereas the other half should be located at the nocturnal side of the globe. Thus each processor handles two subdomains on opposite sides of the globe. Actually the two domains must consist of latitude rows with the same absolute values of latitudes, but with opposite sign. The longitude values in the southern domain are rotated by 180 degree with respect to the corresponding gridpoints in the northern domain. Setting this optional parameter to .true. the southern domain is not rotated. If the code runs on one processor this results in a continuous global domain as in the serial program version.

lfull_m

Setting this optional parameter to .true. ensures that the decomposition in spectral space does not spread wavenumbers with the same longitudinal wavenumber m over different processors. This option is not recommended because it decreases load balance in spectral space.

debug

Setting this optional parameter to .true. runs a second copy of the model using one additional processor so that $nproca \times nprocb + 1$ processors are required in this case. Furthermore it is assumed that norot=.true. for this additional run so that the decomposition corresponds with that of the original serial version.

The values of the variables of the two model copies are compared at certain breakpoints and further tests for equality of corresponding variables can be inserted at any time of program execution. This is the most rigorous test of the parallel version.

A value .true. of the logical module variable debug_parallel indicates that the parallel test mode is enabled.

Decomposition information is stored in the module variables global_decomposition and local_decomposition of derived type pe_decomposed. The elements of the array global_decomposition describe the decomposition for each processor. The scalar type local_decomposition holds the decomposition of the actual processor.

The data type **pe_decomposed** described in the subsection below holds the decomposition information for a single processor.

3.1.3.1 Information on the whole model domain

The following components of data type pe_decomposed have the same contents for all processors of the model:

nlon: number of longitudes of the global domain.

nlat: number of latitudes of the global domain.

nlev: number of levels of the global domain.

nm: maximum wavenumber used. Only triangular truncation is supported.

The following components depend on nm:

nnp(m+1): number of spectral coefficients for each longitudinal wavenumber m, m = 0, nm

nmp(m+1): displacement of the first point of m-columns within the array storing the spectral coefficients. Actually nmp(1)=0 and nmp(nm+2)= last index of the array storing the spectral coefficients. The actual number of coefficients is $2 \times nmp(nm+2)$ because 2 coefficients are stored for each wavenumber.

3.1.3.2 Information valid for all processes of a model instance

The following components of data type pe_decomposed have the same contents for all processors of each instance of the model:

nprocb: number of processors for the dimension that counts longitudes

nproca: number of processors for the dimension that counts latitudes

d_nprocs: number of processors used in the model domain $nproca \times nprocb$.

spe, epe: Index number of first and last processor which handles this model domain.

mapmesh(ib,ia): array mapping from a logical 2-d mesh to the processor index numbers within the decomposition table global_decomposition. ib = 1, nprocb; ia = 1, nproca.

3.1.3.3 General Local Information

The contents of the remaining components of data type **pe_decomposed** is specific for each processor.

pe: processor identifier. This number is used in the mpi send and receive routines.

- set_b: index of processor in the direction of logitudes. This number determines the location within the array mapmesh. processors with ascending numbers handle subdomains with increasing longitudes (i.e. from west to east).
- set_a: index of processor in the direction of latitudes. This number determines the location within the array mapmesh. Processors with ascending numbers handle subdomains with decreasing values of absolute latitudes (i.e. from the pole to the equator within each hemisphere).

3.1.3.4 Grid space decomposition

In grid space longitudes and latitudes are spread over processors. Each processor handles all levels of a model column.

nglat, nglon: number of latitudes and longitudes in grid space handled by this processor.

glats(1:2), glate(1:2): start and end values of global latitude indices.

glons(1:2), glone(1:2): start and end values of global of longitude indices. Each processor handles two subdomains located on opposite sides of the globe. The first elements 1:nglat/2 of array dimensions indexing latitudes correspond to global latitude indices glats(1):glate(1). The last elements nglat/2+1:nglat correspond to global latitude indices glats(2):glate(2). Both, local and global latitude indices run from north to south. Elements e(i, j), i = 1 : nglon, j = 1 : nglat/2 of a local array correspond to global array.

glat(1:nglat): global latitude index.

glon(1:nglon): offset to global longitude index. These components facilitate indexing of global arrays. Elements e(i, j), i = 1 : nglon, j = 1 : nglat/2 of a local array correspond to elements g(glat(i), +glon(i) + j) of the respective global array.

3.1.3.5 Fourier space decomposition

In order to perform the Fourier transformation, the arrays are redistributed so that each processor holds all longitudes or Fourier components. Latitudes are spread over processors as in grid space. Additionally the levels are distributed.

nflat, nflev: number of latitudes and levels on this processor.

- nflevp1: number of levels plus one on this processor. If global arrays hold nlev+1 elements
 per column they require nflevp1 on this processor. nflevp1 is equal to nflev+1 if the
 last level is handled by this processor, otherwise nflevp1 is equal to nflev.
- flevs, fleve: start and end values of levels. The elements e(k), k = 1, nflevp1 of a local array correspond to elements g(l), l = flevs : fleve of the respective global array.
- lfused: .true. if this processor is used in Fourier space.

3.1.3.6 Legendre space decomposition

In order to perform the Legendre transformation, the arrays are redistributed so that each processor holds all latitudes or spectral coefficients for a given longitudinal wavenumber. Levels are spread over processors as in Fourier space. Additionally the longitudinal wavenumbers are distributed.

Row of PEs with same set_a:

nlm: number of local longitudinal wave numbers m handled by this processor.

lm(1:nlm): actual longitudinal wave numbers handled by this processor.

lnsp: number of complex spectral coefficients handled by this processor.

nlmp(1:nlm): displacement of the first coefficient of columns (with same longitudinal wave number) within a globally indexed array (as described by components nm, nnp, nmp).

nlnp(1:nlm): number of points on each column with same longitudinal wave number m.

nlnm0: number of coefficients with longitudinal wave number m=0 on this processor.

Column of PEs with same set_b:

nllev, nllevp1: number of levels (+1) handled by this processor as in Fourier space.

llevs, lleve: start and end values of level indices as in Fourier space.

3.1.3.7 Spectral space decomposition

For spectral computations the arrays are redistributed so that each processor holds all levels for a given spectral coefficient. Longitudinal wavenumbers are spread over processors as in Legendre space. Remaining spectral coefficients are spread over processors.

snsp, snsp2: number of spectral coefficients handled by this processor and number of coefficients multiplied by 2.

ssps, sspe: first and last spectral coefficient with respect to the ordering in Legendre space.

lfirstc: true, if first global coefficient (m=0,n=0) resides on this processor.

ifirstc: location of first global coefficient on this processor.

np1(1:snsp): value of (n+1) for all coefficients of this processor.

mymsp(1:snsp): value of m for all coefficients of this processor.

nns: number of different n-values for this processor.

nindex(1:nns): values of (n+1) different n-values for this processor.

nsm: number of longitudinal wavenumbers per processor.

sm (1:nsm): actual longitudinal wave numbers handled by this processor.

snnp(1:nsm): number of n coefficients per longitudinal wave number m.

snn0(1:nsm): first coefficient n for a given m.

nsnm0: number of coefficients with m=0 on this processor.

3.1.4 Gather, Scatter and Low Level Transposition Routines (mo_transpose)

The module mo_transpose holds the routines to scatter global fields (after input) among the processors, to gather distributed fields from the processors (for output and debug purposes) and to perform the transpositions between the different decompositions (grid, Fourier, Legendre and spectral space).

3.1.4.1 Gather and Scatter routines (gather_xx, scatter_xx)

Generic interfaces are defined for specific routines to act on arrays of different rank (for 3-D atmospheric fields, 2-D surface fields, etc.). Arrays of rank 4 are supported in order to handle arrays allocated in memory buffer. The actual representation (2-D, 3-D) is derived from the shape of the rank 4 arrays or rank 3 arrays.

All scatter and gather routines have a similar interface:

```
subroutine scatter_xx (gl, lc, gl_dc)
subroutine gather_xx (gl, lc, gl_dc, [source])
```

The postfix xx is one of gp, ls, sa or sp and denotes the space to scatter/gather to/from. The parameter gl is a pointer of rank 1 to 4 pointing to the global array. gl needs to be allocated only on the processor which performs i/o.

The parameter lc is an array of the same rank as gl holding the distributed array.

The parameter gl_dc holds the global decomposition table.

All scatter routines distribute a global array from the i/o processor to the decomposed arrays of all processors, including itself.

The gather routines have an optional parameter **source** in order to gather fields from different model copies run in parallel for debug purposes. **source** may have one of the following values:

- -1: gather from all processors. If more than one model copy is run, the result depends on the actual I/O processor within the global decomposition table.
- 0: gather from the i/o processor only. If more than one model copy is run this is the processor which performs calculations on the whole model domain.
- 1: gather from all processors besides the I/O processor. If more than one model copy is run these processors perform the parallel calculations on the distributed domain.
- not present: The effect is the same as if source had the value of the variable debug_parallel in mo_decompose.

The shape of the arrays gl may be one of the following:

scatter_gp, gather_gp: (grid space)

(nlon,	nlev,	ntrac,	nlat)	3D tracer fields
(nlon,	nlev,	nlat,	1)	3D gridpoint field
(nlon,	nlev,	nlat)		
(nlon,	nlat,	1,	1)	2D surface field
(nlon,	nlat,	1)		
(nlon,	nlat)			

nlon, nlat are the number of longitudes and latitudes of the global field gl as specified by the respective components of local_decomposition. nlev, ntrac are arbitrary numbers of vertical levels and tracers. If more longitudes are passed only nlon or nglon longitudes are scattered/gathered.

scatter_sp, gather_sp: (spectral space)

(nlev,	2,	nsp,	1)	full spectral field
(nlev,	2,	nsp)		
(nlev,	nnp1,	1,	1)	spectral array with
(nlev,	nnp1,	1)		m=0 coefficients only
(nlev,	nnp1)			(zonal mean in grid space)

The global field gl has nsp spectral coefficients or nnp1 coefficients for the zonal wavenumber m=0 only as specified by the respective components of local_decomposition. The corresponding decomposed field lc has snsp spectral coefficients or nsnm0 coefficients for the zonal wavenumber m=0 only. nlev is an arbitrary number of vertical levels. The second index is 2 because 2 coefficients are stored for each wavenumber.

scatter_sa,	gather_sa:	(symmetric/	assymetric	Fourier	components
Scatter_Sa,	gatilei _sa.	(symmetric)	assymetric	rouner	componei

(nlev,	2,	nm+1,	nhgl)	full Fourier transformed field
(nlev,	nhgl,	1,	1)	Fourier transformed field (m=0 only)
(nlev,	nhgl)			(zonal mean in grid space)

For reasons of computational efficiency, Legendre transformation is performed on symmetric and asymmetric (with respect to the equator) fields seperately. The symmetric/asymmetric Fourier components are input to the Legendre transform (output of the inverse transform). Thus, the decomposition of these fields corresponds to Legendre space, i.e. vertical levels and zonal wavenumbers are spread over processors.

The global field gl has nm+1 zonal wavenumbers and nlev or nlev+1 vertical levels as specified by the respective components of local_decomposition. The corresponding decomposed field lc has nlm zonal wavenumbers and nllev or nllevp1 vertical levels. nhgl=nlat/2 is half of the number of Gaussian latitudes. The second index of the full fields is 2 because 2 coefficients are stored for each wavenumber.

scatter_ls, gather_ls: (Legendre space)

Scatter and gather routines to/from Legendre space are used for debugging purposes only.

$(2^{*}(nm+1),$	nlev,	nlat,	nvar)	Fourier components, (gather routine only)
(nlev,	2,	nsp)		full spectral field
(nlev,	nnp1)			spectral field with $m=0$ only

Global Fourier transformed fields (in Legendre space distribution) have 2*(nm+1) spectral coefficients and nlev or nlev+1 vertical levels as specified by the respective components of local_decomposition. Global spectral fields have nsp spectral wavenumbers or nnp1 coefficients for m=0 only. The corresponding decomposed field lc has nlm zonal wavenumbers or lnsp complex spectral coefficients and nllev or nllevp1 vertical levels. nlat is the number of latitudes and nvar an arbitrary number of variables.

3.1.4.2 Transposition routines (tr_xx_yy)

```
The general interface of the transpose routines is:

subroutine tr_xx_yy (gl_dc, sign, xxfields.., yyfields..)

TYPE (pe_decomposed) :: gl_dc decomposition table

INTEGER :: sign direction of transposition: 1: xx->yy, -1: xx<-yy

REAL :: xxfields fields in xx-space

REAL :: yyfields fields in yy-space

With xx, yy being one of gp (gridpoint space), 1s (Legendre space), or sp (spectral space).

The shape of the array arguments xxfields, yyfields depends on the data structure in the

respective spaces. The specific interfaces are as follows:
```

```
TYPE (pe_decomposed) , INTENT(in)
                                                  (:)
                                                             ! decomposition
                                        :: gl_dc
INTEGER
                       ,INTENT(in)
                                        :: sign
                                                             ! 1:gp>fs; -1:gp<fs</pre>
REAL
                       ,INTENT(inout)
                                                             ! gridpoint space 3d
                                        :: gp1
                                                  (:,:,:)
                                           . . .
REAL
                                                  (:,:,:)
                       ,INTENT(inout)
                                        :: gp7
                                                             1
REAL ,OPTIONAL
                                                  (:,:)
                      ,INTENT(inout)
                                                             ! gridpoint space 2d
                                        :: sf1
                                                  (:,:)
                                                             ! gridpoint space 2d
REAL , OPTIONAL
                      ,INTENT(inout)
                                        :: sf2
                                                  (:,:)
REAL , OPTIONAL
                                                             ! gridpoint space 2d
                      ,INTENT(inout)
                                        :: sf3
                                                  (:,:)
REAL ,OPTIONAL
                      ,INTENT(inout)
                                       :: zm1
                                                             ! zonal mean
REAL , OPTIONAL
                      ,INTENT(inout)
                                       :: zm2
                                                  (:,:)
                                                             ! zonal mean
                                                  (:,:)
REAL , OPTIONAL
                      ,INTENT(inout)
                                        :: zm3
                                                             ! zonal mean
REAL
                       ,INTENT(inout)
                                        :: fs
                                                  (:,:,:,:) ! Fourier space
REAL ,OPTIONAL
                      ,INTENT(inout)
                                                  (:,:,:)
                                        :: fs0
                                                             ! zonal mean, Four.
SUBROUTINE tr_fs_ls (gl_dc, sign, fs, ls, fs0, ls0)
!
! transpose
i
    sign= 1 : Fourier space -> Legendre space
ļ
    sign=-1 : Fourier space <- Legendre space</pre>
I
TYPE (pe_decomposed) ,INTENT(in)
                                                             ! decomposition
                                        :: gl_dc (:)
INTEGER
                       ,INTENT(in)
                                        :: sign
                                                             ! 1:fs>ls; -1:gs<ls</pre>
REAL
                      ,INTENT(inout)
                                       :: fs
                                                (:,:,:,:)
                                                             ! fs
REAL
                       ,INTENT(inout)
                                       :: ls
                                                (:,:,:,:)
                                                             ! 1s
REAL ,OPTIONAL
                      ,INTENT(inout)
                                       :: fs0
                                                (:,:,:)
                                                             ! fs, zonal means
REAL , OPTIONAL
                      ,INTENT(inout)
                                       :: ls0
                                                (:,:,:)
                                                             ! ls, zonal means
SUBROUTINE tr_ls_sp (gl_dc, sign, ls1, sp1, ls2, sp2, ls3, sp3, ls0, sp0)
i
! transpose
    sign= 1 : Legendre space -> spectral space
!
    sign=-1 : Legendre space <- spectral space
!
T
TYPE (pe_decomposed) , INTENT(in)
                                        :: gl_dc (:)
                                                          ! decomposition
INTEGER
                      ,INTENT(in)
                                        :: sign
                                                          ! 1:ls&gtsp; -1:ls&ltsp
                                                 (:,:,:) ! Legendre space
REAL
                       ,INTENT(inout)
                                        :: ls1
REAL
                       ,INTENT(inout)
                                        :: sp1
                                                 (:,:,:) ! spectral space
                                           . . .
REAL
                       ,INTENT(inout)
                                        :: ls3
                                                 (:,:,:) ! Legendre space
                                                 (:,:,:) ! spectral space
REAL
                      ,INTENT(inout)
                                       :: sp3
REAL , OPTIONAL
                      ,INTENT(inout)
                                        :: ls0
                                                 (:,:)
                                                          ! Legendre (m=0 only)
REAL ,OPTIONAL
                                                 (:,:)
                                                          ! spectral (m=0 only)
                      ,INTENT(inout)
                                        :: sp0
```

3.1.5 High Level Transposition Routines (mo_call_trans)

The routines in module mo_call_trans gather the fields to be transposed from the respective modules and pass them as actual parameters to the routines which finally perform the transformations (defined in module mo_transpose). If ECHAM is run in test mode, the correctness

of the parallel implementation is tested by calling the respective routines for the ingoing and outgoing parameters. Test routines are also provided for the content of some buffers.

The fields involved in the transformation and test routines are listed below.

subroutine	spectral_to_legendre				
Input :	from module mo_memory_ls (Legendre space)				
ld					
ltp					
lvo					
lu0					
Output :	to module mo_memory_sp (spectral space)				
sd					
stp					
SVO					
su0					
subroutine	legendre_to_fourier				
Input :	from module mo_buffer_fft (Legendre space)				
Input : fftl	from module mo_buffer_fft (Legendre space) buffer for 2D and 3D fields				
Input : fftl lbm0	from module mo_buffer_fft (Legendre space) buffer for 2D and 3D fields buffer for zonal means (m=0)				
Input : fftl lbm0 Output :	from module mo_buffer_fft (Legendre space) buffer for 2D and 3D fields buffer for zonal means (m=0) to module mo_buffer_fft (Fourier space)				
Input : fftl lbm0 Output : fftz	from module mo_buffer_fft (Legendre space) buffer for 2D and 3D fields buffer for zonal means (m=0) to module mo_buffer_fft (Fourier space) buffer for 2D and 3D fields				
Input : fftl lbm0 Output : fftz fbm0	from module mo_buffer_fft (Legendre space) buffer for 2D and 3D fields buffer for zonal means (m=0) to module mo_buffer_fft (Fourier space) buffer for 2D and 3D fields buffer for zonal means (m=0)				
Input : fftl lbm0 Output : fftz fbm0	from module mo_buffer_fft (Legendre space) buffer for 2D and 3D fields buffer for zonal means (m=0) to module mo_buffer_fft (Fourier space) buffer for 2D and 3D fields buffer for zonal means (m=0)				
Input : fftl lbm0 Output : fftz fbm0 subroutine	from module mo_buffer_fft (Legendre space) buffer for 2D and 3D fields buffer for zonal means (m=0) to module mo_buffer_fft (Fourier space) buffer for 2D and 3D fields buffer for zonal means (m=0) fourier_to_gridpoint				
Input : fftl lbm0 Output : fftz fbm0 subroutine Input :	from module mo_buffer_fft (Legendre space) buffer for 2D and 3D fields buffer for zonal means (m=0) to module mo_buffer_fft (Fourier space) buffer for 2D and 3D fields buffer for zonal means (m=0) fourier_to_gridpoint from module mo_buffer_fft (Fourier space)				

Input :	from module mo_buffer_fft (Fourier space)
fftz	buffer for 2D and 3D fields
fbm0	buffer for zonal means $(m=0)$
Output :	to module mo_scan_buffer (gridpoint space)
d_scb	
t_scb	
u_scb	
v_scb	
vo_scb	
dtm_scb	
dtl_scb	
alps_scb	
$dalpsl_scb$	
$dalpsm_scb$	
u0_scb	
du0_scb	
ul_scb	

subroutine gridpoint_to_fourier		
Input : from module mo_scan_buffer (gridpoint sp		
rł	1_scb	
d	m_scb	
V	om_scb	
V	ol_scb	
u	0_scb	
d	u0_scb	
u	l_scb	
Ir	iput :	from module mo_memory_g1a (gridpoint space)
al	lpsm1	
di	m1	
tr	n1	
V	om1	
Ο	utput :	to module mo_buffer_fft (Fourier space)
ff	tz	buffer for 2D and 3D fields
fb	om0	buffer for zonal means (m=0)
	subrouti	ne fourier_to_legendre
	Input :	from module mo_buffer_fft (Fourier space)
	fftz	buffer for 2D and 3D fields
	fbm0	buffer for zonal means $(m=0)$
	Output	: to module mo_buffer_fft (Legendre space)
	fftl	buffer for 2D and 3D fields
	lbm0	buffer for zonal means (m=0)
S	subroutine	e legendre_to_spectral
Ι	Input :	from module mo_memory_ls (Legendre space)
1	d	
1	tp	
1	VO	
1	.u0	
(Output :	to module mo_memory_sp (spectral space)
S	sd	
S	stp	
S	SVO	
S	su0	
		subroutine test_memory_f (text)
		Test : module mo_memory_f
		f
		subroutine test memory gp (text)
	Γ	subroutine test_scan_buffer (gp, text)
		subroutine test row buffer (i text)
		Subrousine coordination (J, text)

3.1.6 Global operations (mo_global_op)

In this module, subprograms are collected that perform global operations on 2–d and 3–d fields like the calculation of global or zonal mean values. Any global operation needs communication

between the processors. Even if integrals are split into integrals over the domain that is present on each processor and the summation over all processors, the global operation subroutines slow down the ECHAM6 program the more the more processors are used in a simulation. For this performance reason, it is highly recommended to reduce global operations to a strict minimum in ECHAM6 and to perform such operations in the postprocessing step that can be performed in parallel to a longer simulation.

3.2 Data structures and memory use

3.2.1 Output Streams and Memory Buffer

3.2.1.1 Functionality

The **Output Stream** interface maintains a list of output streams. Generally one ore more streams are associated to an output file. Each stream has attributes specifying the file name, file type, etc.. It further holds a linked list of **Memory Buffer elements**, of 2 to 4 dimensional arrays and associated meta information.

3.2.1.2 Usage

First, a new output stream must be created by calling subroutine new_stream. Afterwards fields may be allocated by calling add_stream_element.

Create a new output stream

The access to the output stream interface is provided by module mo_memory_base:

```
USE mo_memory_base, ONLY: t_stream, & & new_stream, delete_stream, & & default_stream_setting, add_stream_element, & get_stream_element, set_stream_element_info, & memory_info, & ABOVESUR2, ...
```

To create a new output stream the routine **new_stream** has to be called:

```
TYPE (t_stream) ,pointer :: mystream
...
CALL new_stream (mystream ,'mystream')
```

mystream is a pointer holding a reference to the output stream returned by subroutine new_stream. 'mystream' is the identification name of the output stream.

By default, the output and rerun filenames are derived from the name of the output stream (here 'mystream') by appending a respective suffix (here 'mystream') to the standard filenames. The content of the output stream is written to the rerun file and to the output file. To change the defaults, optional parameters may be provided (cf. section 3.2.1.3).

Add a field to an output stream

To include items in the output stream mystream the routine add_stream_element has to be called. A unique name must be given to identify the quantity and a pointer associated to the field is returned. For example, to add a surface field **a** and an atmospheric field **b** with names 'A' and 'B', the following sequence of subroutine calls is required:

```
REAL, POINTER :: a (:,:)
REAL, POINTER :: b (:,:,:)
REAL, POINTER :: c (:,:)
...
CALL add_stream_element (mystream, 'A' ,a)
CALL add_stream_element (mystream, 'B' ,b )
```

By default suitable sizes are assumed for surface (2-d pointer **a**) or atmospheric fields (3-d pointer **b**). To choose other sizes (e.g. spectral fields or a non-standard number of vertical layers) optional parameters must be specified. The specification of the optional parameters is given in section 3.2.1.4

A routine is available to associate a pointer (here c) with an item (here 'A') already included in the list (previously by another sub-model for example):

CALL get_stream_element (mystream, 'A', c)

If stream element 'A' has not been created beforehand, a null pointer is returned for c.

3.2.1.3 Create an output stream

Optional parameters may be passed to subroutines new_stream and add_stream_element in order to specify the attributes of output streams and memory buffers. Furthermore, routines are available to change default values for optional parameters.

The interface of the routine to create an output stream is:

3.2. DATA STRUCTURES AND MEMORY USE

SUBROUTINE	new_stream	(stream ,name [,filetype] [,post_suf] [,rest_suf]				
		[,init_	suf] [,lpost] [,lpout] [,lrerun] [,lcontnorest]		
		[,linit	[,linit] [,interval])			
name	type	intent	default	description		
stream	$type(t_stream)$	pointer		Returned reference to the new output		
				stream.		
name	character(len=*)	in		Name of the new output stream.		
[filetype]	integer	in	$out_filetype$	Type of output file. The default (GRIB)		
				may be changed in namelist /SDSCTL/.		
				Alternatively NETCDF may be passed.		
[post_suf]	character(len=*)	in	$'_{-}'//name$	Suffix of the output file associated with		
				the stream. The default is derived from		
				the name of the output stream.		
[rest_suf]	character(len=*)	in	$'_{-}'//name$	Suffix of the rerun file.		
[init_suf]	character(len=*)	in	''//name	Suffix of initial file.		
[lpost]	logical	in	.true.	Postprocessing flag. If .true. an output		
				file is created for this stream.		
[lpout]	logical	in	.true.	Output flag. The stream is written to the		
				output file if lpout=.true		
[lrerun]	logical	in	.true.	If .true. the stream is read/written		
				from/to the rerun file.		
[lcontnorest]	logical	in		Continue a restart even if this stream is		
				not present in any rerun file.		
[linit]	logical	in	.true.	Write to initial file (does not work?)		
[interval]	type(io_time_event)	in	putdata	Postprocessing output interval. Default:		
	````			12 hours.		

Optional parameters are given in brackets []. They should always be passed by keyword because the number and ordering of optional parameters may change.

Valid values for the argument out_filetype are defined within module mo_memory_base:

INTEGER	,PARAMETER	::	GRIB	= 1
INTEGER	,PARAMETER	::	NETCDF	= 2

For specification of a non-standard output time interval data type io_time_event (defined in module mo_time_event) has to be passed as argument interval. For example, in order to write every time step or in 6 hourly intervals, specify: interval=io_time_event(1,'steps','first',0) or (6,'hours','first',0), respectively.

Once a stream has been created, a reference can be obtained by calling subroutine **get_stream**:

SUBROUT	'INE get_stream (	stream ,	name)	
name	type	intent	default	description
stream	$type(t_stream)$	pointer		Returned reference to the output stream.
name	character(len=*)	in		Name of the output stream.

#### 3.2.1.4 Add a field to the output stream

The routine to add new elements to the output stream is:

SUBROUTINE a	dd_stream_element		<pre>(stream ,name ,ptr [,ldims] [,gdims] [,klev] [,ktrac] [,units] [,longname] [,repr] [,lpost] [,laccu] [lmiss,] [missval,] [,reset] [,lrerun] [,contnorest] [,table] [,code] [,bits] [,leveltype] [,dimnames] [.mem info] [.p4] [.no default] [.verbose])</pre>		
name	type	intent	default	description	
mandatory a	rguments :				
stream	type(t_stream)	inout		Output stream	
name	character(len=*)	in		Name of the field to add to the out-	
ptr	real(:,:[,:][,:])	pointer		Returned reference to the memory of the 2- or 3- or 4-dimensional field.	
specification	of dimensions :				
[ldims(:)]	integer	in	cf. text	Local size on actual processor.	
[gdims(:)]	integer	in	cf. text	Global size of the field.	
[klev]	integer	in	cf. text	Number of vertical levels.	
[ktrac]	integer	in	0	Number of tracers.	
[repr]	integer	in	GRIDPOINT	Representation.	
[leveltype]	integer	in	cf. text	Dimension index of the vertical co- ordinate.	
postprocessi	ng flags :				
[lpost]	logical	in	.false.	Write the field to the postprocessing file.	
[laccu]	logical	in	.false.	"Accumulation" flag: Does no accu- mulation but divides variable by the number of seconds of the output in-	
[reset]	real	in	0.	Reset field to this value after output (default is zero).	
rerun flags :					
[lrerun]	logical	in	.false.	Flag to read/write field from/to the rerun file.	
[contnorest]	logical	in	.false.	If contnorest=.true., continue restart, stop otherwise.	
attributes fo	r NetCDF output	:		, <b>*</b>	
[units]	character(len=*)	in	, ,	Physical units.	
[longname]	character(len=*)	in	, ,	Long name.	
[dimnames(:)]	character(len=*)	in	'lon'[.'lev'].'lat'	Dimension names.	
attributes fo	r GRIB output :		,,,		
[table]	integer	in	0	table number	
[code]	integer	in	0	code number.	
[bits]	integer	in	16	number of bits used for encoding	
Missing valu	es :				
[lmiss]	logical	in	.false.	If lmiss=.true., missing values are set to missval, not set at all other- wise	
[missval]	real	in	$-9 \times 10^{33}$	missing value.	
	s arguments :	•			
$[mem_info]$ [p4(:,:,:,:)]	type(memory_info) real	pointer pointer		Reference to meta data information. Pointer to allocated memory pro-	
			<u> </u>	vided.	
[no_default] [verbose]	logical logical	ın in	.taise. .false.	Default values usage flag. Produce diagnostic printout.	

Most arguments of the routine are optional. They may be given for the following purposes:

#### specification of dimensions:

The total size of the field is specified by the parameter gdims. In a parallel environment, the part allocated on a processor element is specified by the parameter ldims. The order of dimensions is (lon,lat) for 2-d, (lon,lev,lat) for 3-d and (lon,lev,any,lat) for 4-dimensional gridpoint fields. The number of size of gdims and ldims corresponds to the rank of ptr(:,:).

Generally, it is not necessary to give dimension information. The sizes of the fields are derived from the model field sizes. If a 2-dimensional pointer ptr(:,:) is provided for ptr, a SURFACE field is assumed. If a 3-dimensional pointer ptr(:,:,:) is provided, a HYBRID field (lon,lev,lat) is assumed.

For the following cases optional arguments must be specified to overwrite the defaults:

#### The number of vertical levels differs from the number of model levels

To specify a number of levels different from the standard  $\sigma$ -hybrid co-ordinate system used in the model, the parameter **klev** may be specified. A HYBRID coordinate system is assumed in this case. However if the field is written to the postprocessing file (lpost=.true.), it is recommended to either pass a dimension index to parameter leveltype or the name of the dimensions to dimnames in order to pass proper attributes to the NetCDF and GRIB writing routines.

For the usual cases, dimension indices are predefined (cf. table 3.1) and may be accessed from module mo_netcdf. New dimensions may be defined by the use of the subroutine add_dim as described in section 3.2.1.8.

#### The field is not a gridpoint field

For non Gaussian gridpoint fields appropriate values should be passed as parameter repr. Predefined values (mo_linked_list) are:

INTEGER ,PARAMETER :: UNKNOWN = -huge(0)
INTEGER ,PARAMETER :: GAUSSIAN = 1
INTEGER ,PARAMETER :: FOURIER = 2
INTEGER ,PARAMETER :: SPECTRAL = 3
INTEGER ,PARAMETER :: HEXAGONAL = 4
INTEGER ,PARAMETER :: LAND = 5
INTEGER ,PARAMETER :: GRIDPOINT = GAUSSIAN

In all other cases, gdims and ldims have to be defined explicitly.

#### postprocessing flags:

In order to write a field to an output file, lpost=.true. must be specified. Generally the actual values of the field are written. However, if laccu=.true. is specified, the values are divided by the number of seconds of the output interval before output and set to the value of the variable reset afterwards. The default is 0. In this case the fields should be incremented at each time step with values multiplied by the time step length in order to write temporarily averaged values to the output file. If the field is set to the maximum or minimum value during the output time period, values of reset=-huge(0.) or reset=huge(0.) shall be passed.

# rerun flags:

To include the field in the rerun files, lrerun=.true. must be specified.

# attributes for NetCDF output:

For NetCDF output, the physical units, long name, and dimension names of the field should be provided.

# attributes for GRIB output:

For GRIB output, a table number and code number is required. Appropriate table and code numbers are proposed in section ??. A predefined value AUTO may be passed as parameter code in order to automatically generate unique GRIB code numbers. The number of bits used for encoding may be changed by argument bits.

# miscellaneous arguments:

If verbose=.true. is specified, a printout is generated.

The default values of the optional parameters may be changed by calling the subroutine default_stream_setting as described below. However if no_defaults=.true. is specified, these changed default values will not be used.

Generally memory is allocated for the argument ptr when calling add_stream_element, but memory may be provided externally by passing it via the argument p4. Even if 2dimensional or 3-dimensional arrays are accessed via ptr, 4-dimensional fields are used internally and must be passed for p4 (with dimension sizes (lon,lat,1,1) or (lon,lev,lat,1), respectively).

Meta data information about memory may be accessed by the argument mem_info.

# 3.2.1.5 Change of default values for optional arguments

The default values for the optional arguments of subroutine **add_stream_entry** may be changed for all subsequent calls related to an output stream by calling the subroutine

default_stream_setting. This subroutine accepts the same arguments as subroutine add_stream_entry:

SUBROUTINE default_stream_setting	(stream [,units] [,ldims] [,gdims] [,repr]
	[,lpost] [,laccu] [,reset] [,lrerun]
	[,contnorest] [,table] [,code] [,bits]
	[,leveltype] [,dimnames] [,no_default])

If no_default=.true. is not given, previously changed default values are kept. Properties and attributes of an existing stream element may be changed by calling set_stream_element_info. Again, the arguments are similar to those of add_stream_element_info:

```
set_stream_element_info (stream ,name ,longname [,units] [,ldims]
 [,gdims] [,ndim] [,klev] [,ktrac] [,alloc]
 [,repr] [,lpost] [,laccu] [,lmiss]
 [,missval] [,reset] [,lrerun] [,contnorest]
 [,table] [,code] [,bits] [,leveltype]
 [,dimnames] [,no_default])
```

# 3.2.1.6 Access to stream elements

References to previously defined stream elements or to their meta data can be obtained by calling the subroutine get_stream_element or get_stream_element_info, respectively:

get_stream_element_info (stream, name, info)			
name	type	intent	description
stream	type(t_stream)	in	output stream to which reference
			has to be added.
name	character(len=*)	in	name of stream element.
info	type(memory_info)	out	copy of meta data type content.
get_str	eam_element	(stream,	name, ptr)
get_str name	type	(stream, intent	name, ptr) description
get_str name stream	type type(t_stream)	(stream, intent in	name, ptr)       description       output stream list.
get_str name stream name	type type(t_stream) character(len=*)	(stream, intent in in	name, ptr)descriptionoutput stream list.name of stream element.
get_str name stream name ptr	type type(t_stream) character(len=*) real(:,:[,:][,:])	(stream, intent in pointer	name, ptr)         description         output stream list.         name of stream element.         returned reference to stream ele-

# 3.2.1.7 Doubling of stream element entries

It is possible to add a reference to an output stream element to another output stream. By calling the subroutine add_stream_reference. This is useful when the same field shall be written to different output files.

add_stream_reference (stream_stream_reference)		(stream	n ,name [,fromstream] [,lpost] [,kprec)]
name	type	intent	description
stream	$type(t_stream)$	inout	output stream list to extend.
name	character(len=*)	in	name of stream element to add.
[fromstream]	character(len=*)	in	name of output stream to take the
			element from.
[lpost]	logical	in	postprocessing flag of the output
			stream reference.
[kprec]	integer	in	precision of GRIB format in bits
			(default: 16).

# 3.2.1.8 Definition of new dimensions

If other dimensions are required than those defined in Table 3.1, new dimensions can be defined by calling the subroutine add_dim defined in module mo_netcdf.

SUBROUTINE add_dim (name ,len [,longname] [,units] [,levtyp]						
	[,single] [,value] [,indx])					
name	type	intent	default	description		
name	character(len=*)	in		name of dimension.		
len	integer	in		size of dimension.		
[longname]	character(len=*)	in	, ,	long name of dimension.		
[units]	character(len=*)	in	, ,	physical units of dimension.		
[levtyp]	integer	in	0	GRIB level type.		
[single]	logical	in	.false.	flag indicating single level fields.		
[value]	real	in	$1, 2, \ldots$	values of dimension field.		
[indx]	integer	out		index to be passed as argu-		
				ment leveltype to subroutine		
				add_stream_element.		

dimension index	name	klev	GRIB	values	units	longname
			leveltype			
HYBRID	"lev"	nlev	109	$1, \ldots, nlev$		hybrid level
						at layer
						midpoints
HYBRID_H	"ilev"	nlev+1	109	$1, \ldots, nlev+1$		hybrid level
						at layer in-
						terfaces
SURFACE	"surface"	1	1	0		surface field
ABOVESUR2	2m	1	105	0	m	level 2m
						above the
						surface
ABOVESUR10	"10m"	1	105	0	m	level 10m
						above the
						surface
BELOWSUR	"jpgrnd"	5	111	$3,\!19,\!78,\!268,\!698$	$\mathrm{cm}$	levels below
						the surface
TILES	"tiles"	ntiles	70	$1, \ldots, \text{ntiles}$		land surface
						tile
SOILLEV	"soil_layer"	nsoil	71	1	$\mathrm{cm}$	soil levels
						(water)
ROOTZONE	$"root_zones"$	$nroot_zones$	72	$1, \ldots, nroot_zones$		root zone
CANOPY	"canopy_layer"	ncanopy	73	$1, \ldots, ncanopy$		layers in
						canopy

 Table 3.1:
 Predefined dimensions

# 3.3 Date and time variables

In a general atmospheric circulation model such as ECHAM6 that can be used for simulations of historic time periods but also in a "climate mode" for prehistorical time periods together with an ocean model, the orbit of the Earth around the sun has to be rather flexible. The solar irradiance is closely linked to the orbit. From the perspective of the Earth, certain aspects of the orbit can be described with the help of a calendar. There are two different orbits implemented in ECHAM6: An orbit with strictly 360 days of 24 hours in a year and another orbit that can be characterized as proleptic Gregorian meaning that the Gregorian calendar of our days is applied back to the past. Consequently, the historic dates before the 15th October 1582 are different from those of the proleptic Gregorian calendar. E.g., historically, there is no 14th October 1582, but this date is identified with the 4th October 1582 of the historic Julian calendar. The proleptic Gregorian calendar goes back to 4712/01/01 12:00:00 UTC time B.C. including a year 0. Fortran90 data structures are ideal to store and manipulate the heterogeneous structure of time expressed in a calendar date and time of a day. We describe these data structures and their usage in the following

# 3.3.1 Date-time variables in ECHAM6

The date and time of the Gregorian proleptic calendar can be represented in various ways leading to the following definitions of date-time (DT) variables: time_days, time_intern, time_native. Their definition can be found in mo_time_conversion.f90.

Listing 3.1: time_days

```
type time_days
! ...
integer :: day ! day in the proleptic Gregorian
! calendar since 4712/01/01 B.C.
integer :: second ! second in the day [0, 86399]
end type time_days
```

Listing 3.2: time_intern

Listing 3.3: time_native

```
type time_native
! ...
integer :: year, month, day, hour, minute, second
end type_native
```

One can also use an array of 6 elements containing year, month, hour, minute, second.

For the composed data types time_days, time_intern, and time_native, a direct access of the components is not possible because they are declared being "PRIVATE". Instead, they are accessible by the use of subprograms defined in mo_time_conversion.f90. The reason for this is the fact that it is easy to create dates and times that is not valid. Then, all subroutines using such an invalid DT-variable would fail. In order to avoid this, all the subroutines changing one of the components of the DT-variables test whether the resulting dates and times are correct.

# 3.3.2 Usage of DT–variables

A family of overloaded subroutines and functions is provided in the module mo_time_conversion.f90 by ECHAM6 to handle date-time variables:

• Set a DT-variable of type time_days, time_native or time_intern by the use of the overloaded routine tc_set. Example:

Listing 3.4: tc_set

This call of tc_set will search for the special routine set_native that actually sets a variable of type time_native from the input variables kyear, kmonth, kday, khour, kminute, and ksecond.

• Conversion of a variable of one time format into another:

There are 3 * 2 = 6 possible conversions which can all be performed by a call of tc_convert(var1,var2), var1, var2 being of one of the 3 types.

• Getting components of a DT–variable

The components of a DT-variable can be retrieved by a call to the subroutine tc_get. The first argument of tc_get is a variable of one of the DT-variable types, the following arguments are all optional. Their names are the names of the components of the corresponding DT-variable of the first argument. Example:

#### Listing 3.5: tc_get

```
type(time_native) :: my_date
call tc_get(my_date,year=kyear)
call tc_get(my_date,year=kyear,second=ksecond)
```

In that case, the first call of tc_get only retrieves the value of the year, whereas the second call retrieves the year and the second of my_date.

• Comparison of DT–variables

DT-variables can be compared using certain operators in order to know whether a certain date is before or after a second date. Fortran90 provides the possibility to overload intrinsic Fortran90 functions such as "<", ">" or "==". You can then use these operator symbols also for the comparison of user defined data types. In that case, the user has to provide an order on the domain of these variables.

Listing 3.6: overloaded operators

```
USE mo_time_conversion, ONLY: operator(<),operator(==),
 operator(>)
TYPE(time_native) :: var1, var2
! ...
IF (var1 < var2) THEN
!...</pre>
```

The argument of the if statement is true if the date of var1 is before the date of var2.

# 3.3.3 Information about actual date and time in ECHAM6.

There are three variables in which the time and date of the previous  $(t - \Delta t)$ , the current (t), and the next time step  $(t + \Delta t)$  are stored. These variables are defined in mo_time_control:

Listing 3.7: date and time variables

type(time_days) :: previous_date, current_date, next_date

# 3.3.4 Variables describing repeated events.

The variable types of DT variables described so far are used for a representation of absolute date and time in ECHAM6. In this paragraph, the data structure associated with repeated events is presented. This data structure is used in the namelists (section 2.2) to determine the frquency of certain events. Each variable describing repeated events consist of an integer number and the unit, describing the frequency of the event. In addition, some keywords can be set which determine the position of the repeated events relative to the absolute time axis. The underlying data structure is defined in mo_time_event:

Listing	3.8:	io_time.	event
---------	------	----------	-------

type io_time_event				
integer	::	counter	!	interval
character(len=20)	::	unit	!	unit
character(len=20)	::	adjustment	!	adjustment
integer	::	offset	!	offset
end type io_time_eve	nt			

With the help of this data structure, we may define a variable **outfrq** that will describe the output frequency of a stream for example.

#### Listing 3.9: outfrq

#### type(io_time_event) :: outfrq

A variable of such a type can be read from the namelist like all the other variables describing repeated events (putdata, putrerun) but we also may which to communicate it to all processors. For this purpose, there is a special subroutine p_bcast_event defined in mo_time_control.f90 which is used in the following way:

List	<b>ing 3.10:</b> p_bcast_event
USE mo_time_control,	ONLY: p_bcast_event
call p_bcast_event(outfrq,	, pe_io)

The call of p_bcast_event sends this variable to all processors. Then, the variable outfrq can be used in the definition of a new stream.

# **3.4** Submodel interface

# 3.4.1 Introduction

ECHAM6 allows the implementation of so-called submodels. A submodel can describe any additional physical processes that will either be linked in a one-way coupling to echam or a two-way coupling. A one-way coupling in this context means that the additional physical processes are such that they need input from the ECHAM6 base model but do not change the general circulation. One could also say that the results of such a model are derived from the ECHAM6 base model in a "diagnostic" way. If the base model is linked by a two-way coupling to a submodel, the submodel interacts with ECHAM6 and modifies the general circulation. An example for the one-way coupling would be diagnostic chemistry implemented in such a way that the chemical species are transported by the winds given by ECHAM6 and the chemical reactions are driven by the pressure, temperature, humidity and radiation simulated by ECHAM6. Nevertheless, the concentration of the chemical species would not be allowed to influence these quantities. A two-way coupling would be introduced if the concentration of the chemical species influences the radiation by absorption of radiation for example.

The implementation of such submodels needs an interface to the submodel that provides a certain set of variables to the submodel routines. In fact, the submodel interface is a collection of dummy subroutines in ECHAM6 inside which the special subroutines of a submodel can be called. These special subroutines will not be a part of ECHAM6 but will perform all submodel specific tasks as the solution of the chemical kinetic equations for example. In addition to this submodel interface, many submodels need the introduction of tracers that are transported with the air flow like water waper is transported. These tracers are often associated with certain chemical species having specific physico-chemical properties. In general, it may occur that a certain species is represented by several tracers (e.g. various CO tracers depending on the region of emission of CO, so-called "tagged" tracers) so that every tracer has the same physico-chemical properties. Conceptually, it is better to separate the tracer properties from a list of physico-chemical species properties so that this information is present only once in the program. This avoids inconsistent definition of species properties and is therefore more user friendly. This separation is not yet finished in the current ECHAM6 version and the species data structure will therefore not be described here although it is present. As soon as this species concept has settled, this description will be added.

#### Submodel Interface 3.4.2

The submodel interface consists of the subroutines listed in Tab. 3.2 that are all collected in module mo_submodel_interface.f90.

Subroutine	Called in	Explanation
init_subm	initialize.f90	Initialization of submodel. This com-
		prises reading of specific submodel
		data. However, this is not the right
		place to read gridded fields.
init_subm_memory	init_memory of	Allocation of memory for submodel
	mo_memory_streams.f90	either in streams or $2-$ and $3-$
		dimensional fields.
stepon_subm	stepon.f90	Called at the beginning of a new time
		step. Good for reading data at regular
		time intervals.
physc_subm_1	physc.f90	Call in the "physics" part of calcula-
		tion. The "physics" processes are pro-
		cesses in one column over a grid cell.
		This subroutine is called before the ra-
		diation calculation.
$radiation_subm_1$	${\tt rrtm_interface}$ of	Submodels can modify the optical
	mo_radiation.f90	properties of the atmosphere here. It
		is called before the radiation fluxes are
		calculated.
		table continued on next page

Table 3.2: Submodel interface subroutines. The subroutines are listed in the same order as they are called in ECHAM6.

table continued on next page

radiation_subm_2	${\tt rrtm_interface}$ of	Good for radiation diagnostics per-
	$mo_radiation.f90$	formed by submodels.
vdiff_subm	vdiff.f90	In this subroutine, net surface fluxes can be calculated that will be used as boundary conditions in the vertical dif- fusion equation. Good for surface emis- sion fluxes and dry deposition fluxes.
rad_heat_subm	radheat.f90	Diagnostic of heating rates.
physc_subm_2	physc.f90	First interface that is good for cal- culation of physical processes of sub- models like chemical kinetics or aerosol physics. It is called before cloud physics but after vdiff and radheat
cuflx_subm	cuflux.f90	Submodels can interfere with convec- tion here. E.g. wet deposition of con- vective clouds has to be implemented here.
cloud_subm	cloud.f90	Implement interaction between cloud physics and submodels here. E.g. "wet chemistry" should be implemented here. Wet deposition of large scale pre- cipitation has to be implemented here.
physc_subm_3	physc.f90	Second interface that is good for cal- culation of physical processes of sub- models like chemical kinetics or aerosol physics. It is called after cloud physics.
physc_subm_4	physc.f90	This is the right place for submodel di- agnostics after all physics processes are calculated.
free_subm_memory	free_memory of mo_memory_streams.f90	Deallocation of allocated submodel memory here is mandatory, otherwise the internal rerun process will fail. In addition, it is very important to set back all submodel switches to their de- fault values. In particular switches that indicate that certain fields are allocated or certain data are read.

Table 3.2: Submodel interface — continued

Inside these interface routines, the submodel specific routines should be called. These calls have to be implemented all into mo_submodel_interface.f90 and the calls have to be effective if and only if the respective submodel is switched on. Since mo_submodel_interface.f90 is part of the ECHAM6 code but the submodel routines are not, the calls should be switched off/on by compiler directives. In that case, the calls can be included in the standard version of mo_submodel_interface.f90. Neither an extra version of this module has to be kept by the submodel users nor any update has to be done "by hand".

The parameter lists of the submodel interface routines are described in the following subsections.

#### 3.4.2.1 Interface of init_subm

#### Listing 3.11: init_subm

#### SUBROUTINE init_subm

This subroutine has no parameter list.

#### 3.4.2.2 Interface of init_subm_memory

#### Listing 3.12: init_subm_memory

#### SUBROUTINE init_subm_memory

This subroutine has no parameter list. In general, the fields allocated here belong to the submodel. Since the submodel is supposed to be organized in modules, global submodel fields should be defined as module variables and can be brought to any submodel subroutine by use statements. Streams are easily accessible by their names. Nevertheless, subroutines of the kind get_stream or get_stream_element are slow and should not be used repeatedly. Instead, pointers to the stream elements can be stored as global submodel variables and used later in the program.

#### 3.4.2.3 Interface of stepon_subm

Listing	3.13:	stepon_subm
---------	-------	-------------

SUBROUTINE	stepon_subm	(	current_date,	next_date)
TYPE(time	_days)	::	current_date	
TYPE(time	_days)	::	next_date	

Table 3.3: Parameter list of arguments passed to stepon_subm

name	type	intent	description
current_date	time_days		time and date of current time step
next_date	time_days		time and date of prognostic time step

3.4.2.4 Interface of physc_subm_1

INTENT(in)

INTEGER,

SUBROUTINE physc_subm_1 (kproma, kbdim, klev, & klevp1, ktrac, krow, & papm1, paphm1, & ptm1, ptte, & pxtm1, pxtte, & ) pqm1, pqte INTENT(in) INTEGER, :: kproma INTEGER, INTENT(in) :: kbdim

:: klev

Listing 3.14: physc_subm_1

INTEGER,	INTENT(in)	::	klevp1	
INTEGER,	INTENT(in)	::	ktrac	
INTEGER,	INTENT(in)	::	krow	
REAL(dp),	INTENT(in)	::	papm1	(kbdim,klev)
REAL(dp),	INTENT(in)	::	paphm1	(kbdim,klevp1)
REAL(dp),	INTENT(in)	::	ptm1	(kbdim,klev)
REAL(dp),	INTENT(in)	::	ptte	(kbdim,klev)
REAL(dp),	INTENT(inout)	::	pxtm1	(kbdim,klev,ktrac)
REAL(dp),	INTENT(inout)	::	pxtte	(kbdim,klev,ktrac)
REAL(dp),	INTENT(in)	::	pqm1	(kbdim,klev)
REAL(dp),	INTENT(in)	::	pqte	(kbdim,klev)

Table 3.4: Parameter list of arguments passed to physc_subm_1

name	type	intent	description
kproma	integer	in	actual length of block of geographi- cal longitudes (one longitude block can contain grid cells of various geographi- cal latitudes)
kbdim	integer	in	maximum length of block of geographi- cal longitudes (one longitude block can contain grid cells of various geographi- cal latitudes)
klev	integer	in	number of model levels (layers)
klevp1	integer	in	number of layers plus one
ktrac	integer	in	number of tracers
krow	integer	in	index number of block of geographical longitudes
<pre>papm1(kbdim,klev)</pre>	double prec.	in	pressure of dry air at center of model layers at time step $t - \Delta t$
<pre>paphm1(kbdim,klevp1)</pre>	double prec.	in	pressure of dry air at interfaces between model layers at time step $t - \Delta t$
ptm1(kbdim,klev)	double prec.	in	temperature at center of model layers at time step $t - \Delta t$
ptte(kbdim,klev)	double prec.	in	temperature tendency at center of model layers accumulated over all pro- cesses of actual time step until call of this subroutine
<pre>pxtm1(kbdim,klev,ktrac)</pre>	double prec.	inout	tracer mass or molar mixing ratio with respect to dry air at center of model layers at time step $t - \Delta t$
<pre>pxtte(kbdim,klev,ktrac)</pre>	double prec.	inout	tendency of tracer mass or molar mix- ing ratio with respect to dry air at cen- ter of model layers accumulated over all processes of actual time step until call of this subroutine

table continued on next page

pqm1(kbdim,klev)	double prec.	in	specific humidity (with respect to dry
			air) at center of model layers at time
			step $t - \Delta t$
pqte(kbdim,klev)	double prec.	in	tendency of specific humidity (with re-
			spect to dry air) at center of model lay-
			ers accumulated over all processes of
			actual time step until call of this sub-
			routine

Table 3.4: Parameters of  $physc_subm_1$  — continued

3.4.2.5 Interface of radiation_subm_1

Listing 3.15: 1	radiation_subm_1
-----------------	------------------

SUBROUTINE	radiation_	subm	1_1 &	C				
(kproma	,kbdim				,klev	,	krow	<b>,</b> &
ktrac		,kae	ero		,kpband	,	kb_sw	<b>,</b> &
aer_tau	1_sw_vr	,aer	_piz	z_sw_vr	,aer_cg_sw_	vr		<b>,</b> &
aer_tau	ı_lw_vr							<b>,</b> &
ppd_hl		,pxt	m1					)
INTEGER,	INTENT(in)	::	kpro	oma				
INTEGER,	INTENT(in)	::	kbdi	. m				
INTEGER,	INTENT(in)	::	klev	r				
INTEGER,	INTENT(in)	::	krow	T				
INTEGER,	INTENT(in)	::	ktra	1C				
INTEGER,	INTENT(in)	::	kaer	0				
INTEGER,	INTENT(in)	::	kpba	and				
INTEGER,	INTENT(in)	::	kb_s	S W				
REAL(dp)	, INTENT(in	out)	::	aer_tau_sw	v_vr(kbdim,k	clev,	kb_sw)	, &
				aer_piz_sv	v_vr(kbdim,k	clev,	kb_sw)	, &
				aer_cg_sw_	_vr(kbdim,kl	ev,k	b_sw),	&
				aer_tau_lv	v_vr(kbdim,k	clev,	kpband	),&
REAL(dp)	, INTENT(in	)::	ppd_	hl(kbdim,k	klev)			
REAL(dp)	, INTENT(in	)::	pxtm	1(kbdim,k]	lev,ktrac)			

Table 3.5: Parameter list of arguments passed to radiation_subm_1

name	type	intent	description
kproma	integer	in	actual length of block of geographi-
			cal longitudes (one longitude block can
			contain grid cells of various geographi-
			cal latitudes)
kbdim	integer	in	maximum length of block of geographi-
			cal longitudes (one longitude block can
			contain grid cells of various geographi-
			cal latitudes)
klev	integer	in	number of model levels (layers)
			table continued on next page

krow	integer	in	index number of block of geographical
			longitudes
ktrac	integer	in	number of tracers
kaero	integer	in	switch for aerosol radiation coupling
kpband	integer	in	number of bands in the thermal radia-
			tion wavelength range
kb_sw	integer	in	number of bands in the solar radiation wavelength range
aer_tau_sw_vr (kbdim,klev,kb_sw)	double prec.	inout	aerosol optical depth of model layers for solar radiation wavelength bands. Here, the model layers are ordered from the Earth's surface (level index 1) to the top of the atmosphere (level index klev) as indicated by _vr = vertically reversed
aer_piz_sw_vr (kbdim,klev,kb_sw)	double prec.	inout	aerosol single scattering albedo for so- lar radiation wavelength bands. Here, the model layers are ordered from the Earth's surface (level index 1) to the top of the atmosphere (level index klev) as indicated by _vr = vertically reversed
aer_cg_sw_vr (kbdim,klev,kb_sw)	double prec.	inout	aerosol asymmetry factor for solar ra- diation wavelength bands. Here, the model layers are ordered from the Earth's surface (level index 1) to the top of the atmosphere (level index klev) as indicated by _vr = vertically reversed
aer_tau_lw_vr (kbdim,klev,kpband)	double prec.	inout	aerosol optical depth of model layers for thermal radiation wavelength bands. Here, the model layers are ordered from the Earth's surface (level index 1) to the top of the atmosphere (level index klev) as indicated by _vr = vertically reversed
ppd_hl(kbdim,klev)	double prec.	in	absolute value of dry air pressure dif- ference between upper and lower limit of model layers at time $t - \Delta t$
<pre>pxtm1(kbdim,klev,ktra</pre>	ac)louble prec.	in	tracer mass or molar mixing ratio with respect to dry air at center of model layers at time step $t - \Delta t$

#### Table 3.5: Parameters of radiation_subm_1 — continued

3.4.2.6 Interface of radiation_subm_2

SUBROUTINE	radiation_su	bm_	_2(kprom	a, kbdim	, krow,	klev,	&
			ktrac	, kaero,			&
			pxtm1				)
INTEGER,	INTENT(in)	::	kproma				
INTEGER,	INTENT(in)	::	kbdim				
INTEGER,	INTENT(in)	::	krow				
INTEGER,	INTENT(in)	::	klev				
INTEGER,	INTENT(in)	::	ktrac				
INTEGER,	INTENT(in)	::	kaero				
REAL(dp)	, INTENT(in)	::	pxtm1 (	kbdim,kl	ev,ktra	c)	

Table 3.6:	Parameter	list of	arguments	passed to	radiation	_subm_2

name	type	intent	description
kproma	integer	in	actual length of block of geographical
			longitudes (one longitude block can
			contain grid cells of various geograph-
			ical latitudes)
kbdim	integer	in	maximum length of block of geo-
			graphical longitudes (one longitude
			block can contain grid cells of various
			geographical latitudes)
krow	integer	in	index number of block of geographical
klev	integer	in	number of model levels (layers)
ktrac	integer	in	number of tracers
kaero	integer	in	switch for aerosol radiation coupling
<pre>pxtm1(kbdim,klev,ktrac)double prec.</pre>		in	tracer mass or molar mixing ratio
			with respect to dry air at center of
			model layers at time step $t - \Delta t$

# 3.4.2.7 Interface of vdiff_subm

SUBROUTINE	<pre>vdiff_subm(kproma,</pre>	kbdim,	klev,	klevp1,	&
	ktrac,	krow,			&
	ptm1,	pum1,	pvm1,	pqm1,	&
	papm1,	paphm1,	paphp1,	pgeom1,	ptslm1,&
	pxtm1,	pseaice	,pforest	,	&
	pfrl,	pfrw,	pfri,	pcvs,	pcvw, &
	pvgrat,	ptsw,	ptsi,		&
	pu10,	pv10,			&
	paz0,	pazOl,	paz0w,	pazOi,	&
	pcfm,	pcfnc,	pepdu2,	pkap,	&
	pri,	ptvir1,	ptvl,		&
	psrfl,	pcdn, p	pqss, p	pvlt,	&
	loland,				&

		pxtt	te, pxt	s,	
		pxlm	n1, pxi	m1	
INTEGER,	INTENT(in)	::	kproma		
INTEGER,	INTENT(in)	::	kbdim		
INTEGER,	INTENT(in)	::	klev		
INTEGER,	INTENT(in)	::	klevp1		
INTEGER .	INTENT(in)	::	ktrac		
INTEGER .	INTENT(in)	::	krow		
REAL(dp).	INTENT(in)	::	ptm1	(kbdim.klev)	
REAL(dp).	INTENT(in)	::	1 מומ	(kbdim.klev)	
REAL(dp).	INTENT(in)	::	יים 1 סעש	(kbdim.klev)	
REAL(dp).	INTENT(in)	::	pam1	(kbdim.klev)	
REAL(dp)	INTENT(in)		panm1	(kbdim klev)	
REAL(dp),	INTENT(in)	•••	papmi nanhm1	(kbdim klev+1)	
REAL (dp),	INTENT(in)	•••	paphmi nanhni	(kbdim klev+1)	
REAL(dp),	INTENT(in)	•••	ngeom1	(kbdim klev)	
REAL(dp),	INTENT(in)	•••	pgcomi ntelm1	(kbdim)	
REAL(dp),	INTENT (inc	··· ···+ )	·· nvtm	(kbdim klow ktrac)	
REAL(dp),	INTENT (in)		ngopico	(kbdim)	
REAL(dp),	INTENT(II)	•••	psearce	(kbdim)	
REAL(dp),	INTENT(II)	•••	prorest	(kbdim)	
REAL(dp),	INTENT(In)	•••	piii nfru	(kbdim)	
REAL(dp),	INTENT(In)	•••	piiw nfri	(kbdim)	
REAL(dp),	INTENT(II)	•••	PILI	(kbdim)	
REAL(dp),	INTENT(In)	•••	pevs	(kbdim)	
REAL(dp),	INTENT(In)	•••	purat	(kbdim)	
REAL(dp),	INTENT(IN)	•••	ntsw	(kbdim)	
REAL(dp),	INTENT(in)	•••	ntsi	(kbdim)	
REAL(dp),	INTENT(in)	•••	pusi nu10	(kbdim)	
REAL(dp),	INTENT(in)	•••	puio nv10	(kbdim)	
REAL(dp),	INTENT(in)	•••		(kbdim)	
REAL (dp),	INTENT(in)	•••	paz01	(kbdim)	
REAL(dp),	INTENT(in)	•••	paz01 naz0w	(kbdim)	
REAL (dp),	INTENT(in)	•••	pazow naz0i	(kbdim)	
REAL(dp),	INTENT(in)	•••	ncfm	(khdim klev)	
REAL (dp),	INTENT(in)	•••	ncfnc	(kbdim)	
REAL(dp),	INTENT(II)	•••	perne nendu?	(Kbuim)	
REAL(dp),	INTENT(In)	•••	pepuuz nkan		
REAL(dp),	INTENT (III)	•••	prap nri	(khdim)	
REAL(dp),	INTENT (III)	••	pri ntvir1	(kbdim klow)	
REAL(dp),	INIENI (III)	••	ptviii ntul	(kbdim, Kiev)	
REAL(dp),	INIENI (III)	••	puvi narfl	(kbdim)	
REAL(up),	INIENI (III)	••	psiii	(kbdim)	
REAL(dp),		•••	peun	(kbdim klow)	
REAL (dp),		•••	pyss pyl+	(kbdim)	
IDGICAI		•••	PVIC	(kbdim)	
DEAL (da)	INTENI (II)	· · ·	++	(kbdim klaw ktwas)	
REAL (dp),		,ut)	pxtt	e (KDUIM, KIEV, KUTAC)	
neal(up),	TNICNI(TUC	JUL J	prie	ms (KDUIM, KUIAC)	

& ) REAL(dp), INTENT(in) :: pxlm1 (kbdim,klev) REAL(dp), INTENT(in) :: pxim1 (kbdim,klev)

		• • •	
name	type	intent	description
kproma	integer	in	actual length of block of geographi- cal longitudes (one longitude block can contain grid cells of various geographi- cal latitudes)
kbdim	integer	in	maximum length of block of geographi- cal longitudes (one longitude block can contain grid cells of various geographi- cal latitudes)
klev	integer	in	number of model levels (layers)
klevp1	integer	in	number of layers plus one
ktrac	integer	in	number of tracers
krow	integer	in	index number of block of geographical longitudes
ptm1(kbdim,klev)	double prec.	in	temperature at center of model layers at time step $t - \Delta t$
<pre>pum1(kbdim,klev)</pre>	double prec.	in	zonal wind component at center of model layers at time step $t - \Delta t$
pvm1(kbdim,klev)	double prec.	in	meridional wind component at center of model layers at time step $t - \Delta t$
pqm1(kbdim,klev)	double prec.	in	specific humidity (with respect to dry air) at center of model layers at time step $t - \Delta t$
<pre>papm1(kbdim,klev)</pre>	double prec.	in	pressure of dry air at center of model layers at time step $t - \Delta t$
<pre>paphm1(kbdim,klevp1)</pre>	double prec.	in	pressure of dry air at interfaces between model layers at time step $t - \Delta t$
<pre>paphp1(kbdim,klevp1)</pre>	double prec.	in	pressure of dry air at interfaces between model layers at prognostic time step $t + \Delta t$
pgeom1(kbdim,klev)	double prec.	in	geopotential at center of model layers at time step $t - \Delta t$
ptslm1(kbdim)	double prec.	in	surface temperature at time step $t-\Delta t$
<pre>pxtm1(kbdim,klev,ktrac)</pre>	double prec.	inout	tracer mass or molar mixing ratio with respect to dry air at center of model layers at time step $t - \Delta t$
pseaice(kbdim)	double prec.	in	sea ice fraction
pforest(kbdim)	double prec.	in	forest fraction
pfrl(kbdim)	double prec.	in	land fraction
pfrw(kbdim)	double prec.	in	surface water fraction
pfri(kbdim)	double prec.	in	surface ice fraction

Table 3.7: Parameter list of arguments passed to vdiff_subm

table continued on next page

pcvs(kbdim)	double prec.	in	snow cover fraction
pcvw(kbdim)	double prec.	in	wet skin fraction
pvgrat(kbdim)	double prec.	in	vegetation ratio
ptsw(kbdim)	double prec.	in	surface temperature over water
ptsi(kbdim)	double prec.	in	surface temperature over ice
pu10(kbdim)	double prec.	in	zonal wind component 10 m above the surface
pv10(kbdim)	double prec.	in	meridional wind component 10 m above the surface
paz0(kbdim)	double prec.	in	roughness length
pazOl(kbdim)	double prec.	in	roughness length over land
pazOw(kbdim)	double prec.	in	roughness length over water
pazOi(kbdim)	double prec.	in	roughness length over ice
pcfm(kbdim,klev)	double prec.	in	stability dependent momentum trans- fer coefficient at center of model layers
pcfnc(kbdim)	double prec.	in	function of heat transfer coefficient; not set?
pepdu2	double prec.	in	a constant set in vdiff.f90. It is used e.g. in mo_surface_land as the allowed minimum of the square of the absolute wind velocity
pkap	double prec.	in	von Karman constant
pri(kbdim)	double prec.	in	Richardson number for moist air
ptvir1(kbdim,klev)	double prec.	in	potential density temperature
ptvl(kbdim)	double prec.	in	virtual temperature over land
psrfl(kbdim)	double prec.	in	net surface solar radiation flux at time $(?)$ t
pcdn(kbdim)	double prec.	in	heat transfer coefficient averaged over land, water and ice cover fraction of a grid box
pqss(kbdim,klev)	double prec.	in	specific humidity at which the air is saturated at time $(?)$ t
pvlt(kbdim)	double prec.	in	obsolete, will be removed
loland(kbdim)	double prec.	in	logical land mask including glaciers
<pre>pxtte(kbdim,klev,ktrac)</pre>	double prec.	inout	tendency of tracer mass or molar mix- ing ratio with respect to dry air at cen-
			ter of model layers accumulated over all processes of actual time step until call of this subroutine
<pre>pxtems(kbdim,ktrac)</pre>	double prec.	inout	surface emission flux
pxlm1	double prec.	in	cloud liquid water content at center of model layers at time step $t - \Delta t$
pxim1	double prec.	in	cloud water ice content at center of model layers at time step $t - \Delta t$

Table 3.7: Parameters of vdiff_subm — continued

SUBROUTINE	radheat_subm	ı		
(kproma	,kbdim		,klev	, &
klevp1	,krow		,pconvfact	, &
pflxs	,pflxt	;)		
INTEGER.	INTENT(in)	::	kproma	
INTEGER,	INTENT(in)	::	kbdim	
INTEGER,	INTENT(in)	::	klev	
INTEGER,	INTENT(in)	::	klevp1	
INTEGER,	INTENT(in)	::	krow	
REAL(dp),	, INTENT(in)	::	pconvfact(kbdim,klev	)
REAL(dp),	INTENT(in)	::	pflxs(kbdim,klevp1),	pflxt(kbdim,klevp1
)				

Listing 3.18: rad_heat_subm

name	type	intent	description
kproma	integer	in	actual length of block of geographi cal longitudes (one longitude block can contain grid cells of various geographi cal latitudes)
kbdim	integer	in	maximum length of block of geographi cal longitudes (one longitude block can contain grid cells of various geographi cal latitudes)
klev	integer	in	number of model levels (layers)
klevp1	integer	in	number of layers plus one
krow	integer	in	index number of block of geographical longitudes
pconvfact(kbdim,klevp1)	double prec.	in	conversion factor for conversion of energy flux differences between upper and lower layer boundary to heating rate of the air in this layer. The factor is cal- culated for the time at time step $t - \Delta a$
pflxs(kbdim,klevp1)	double prec.	in	net energy flux of solar radiation integrated over all solar radiation bands a the layer interfaces for time $t$
pflxt(kbdim,klevp1)	double prec.	in	net energy flux of thermal radiation integrated over all thermal radiation bands at the layer interfaces for time t

3.4.2.9 Interface of physc_subm_2

Listing 3.19: physc_subm_2

SUBROUTINE physc_subm_2	&
(kproma, kbdim,	klev, klevp1, ktrac, krow, &
itrpwmo, itrpw	mop1, &
paphm1, papm1,	paphp1, papp1, &
ptm1, ptte,	ptsurf, &
pqm1, pqte,	pxlm1, pxlte, pxim1, pxite, &
pxtm1, pxtte,	&
paclc, ppbl,	&
loland, loglac	)
INTEGER, INTENT(in) ::	kproma
INTEGER, INTENT(in) ::	kbdim
INTEGER, INTENT(in) ::	klev
INTEGER, INTENT(in) ::	klevp1
INTEGER, INTENT(in) ::	ktrac
INTEGER, INTENT(in) ::	krow
INTEGER, INTENT(in) ::	itrpwmo (kbdim)
INTEGER, INTENT(in) ::	itrpwmop1(kbdim)
REAL(dp), INTENT(in) ::	paphm1 (kbdim,klev+1)
REAL(dp), INTENT(in) ::	papm1 (kbdim,klev)
REAL(dp), INTENT(in) ::	paphp1 (kbdim,klev+1)
REAL(dp), INTENT(in) ::	papp1 (kbdim,klev)
REAL(dp), INTENT(in) ::	ptm1 (kbdim,klev)
REAL(dp), INTENT(in) ::	ptte (kbdim,klev)
REAL(dp), INTENT(in) ::	ptsurf (kbdim)
REAL(dp), INTENT(in) ::	pqm1 (kbdim,klev)
REAL(dp), INTENT(in) ::	pqte (kbdim,klev)
REAL(dp), INTENT(in) ::	pxlm1 (kbdim,klev)
REAL(dp), INTENT(in) ::	pxlte (kbdim,klev)
REAL(dp), INTENT(in) ::	pxim1 (kbdim,klev)
REAL(dp), INTENT(in) ::	pxite (kbdim,klev)
REAL(dp), INTENT(in) ::	paclc (kbdim,klev)
REAL(dp), INTENT(in) ::	ppbl (kbdim)
REAL(dp), INTENT(inout)	<pre>:: pxtm1 (kbdim,klev,ktrac)</pre>
REAL(dp), INTENT(inout)	<pre>:: pxtte (kbdim,klev,ktrac)</pre>
LOGICAL, INTENT(in) ::	loland (kbdim)
LOGICAL, INTENT(in) ::	loglac (kbdim)

 Table 3.9:
 Parameter list of arguments passed to physc_subm_2

name	type	intent	description
kproma	integer	in	actual length of block of geographi-
			cal longitudes (one longitude block can
			contain grid cells of various geographi-
			cal latitudes)
			table continued on next page

99

table continued on next page

kbdim	integer	in	maximum length of block of geographi- cal longitudes (one longitude block can contain grid cells of various geographi- cal latitudes)
klev	integer	in	number of model levels (lavers)
klevp1	integer	in	number of layers plus one
ktrac	integer	in	number of tracers
krow	integer	in	index number of block of geographical longitudes
itrpwmo(kbdim)	integer	in	index of model level at which meteorological trop opause was detected at time $t$
<pre>itrpwmop1(kbdim)</pre>	integer	in	index of model level at which meteorological trop opause was detected plus 1 at time $t$
paphm1(kbdim,klevp1)	double prec.	in	pressure of dry air at interfaces between model layers at time step $t - \Delta t$
<pre>papm1(kbdim,klev)</pre>	double prec.	in	pressure of dry air at center of model layers at time step $t - \Delta t$
<pre>paphp1(kbdim,klevp1)</pre>	double prec.	in	pressure of dry air at interfaces between model layers at prognostic time step $t + \Delta t$
<pre>papp1(kbdim,klev)</pre>	double prec.	in	pressure of dry air at center of model layers at time step $t + \Delta t$
ptm1(kbdim,klev)	double prec.	in	temperature at center of model layers at time step $t - \Delta t$
ptte(kbdim,klev)	double prec.	in	temperature tendency at center of model layers accumulated over all pro- cesses of actual time step until call of this subroutine
ptsurf(kbdim)	double prec.	in	surface temperature at time step $t$
pqm1(kbdim,klev)	double prec.	in	specific humidity (with respect to dry air) at center of model layers at time step $t - \Delta t$
pqte(kbdim,klev)	double prec.	in	tendency of specific humidity (with re- spect to dry air) at center of model lay- ers accumulated over all processes of actual time step until call of this sub- routine
pxlm1	double prec.	in	cloud liquid water content at center of model layers at time step $t - \Delta t$
pxlte	double prec.	in	cloud liquid water tendency at center of model layers accumulated over all pro- cesses of actual time step until call of this subroutine

Table 3.9: Parameters of physc_subm_2 — continued

table continued on next page
pxim1	double prec.	in	cloud water ice content at center of model layers at time step $t = \Delta t$
pxite	double prec.	in	cloud water ice tendency at center of model layers accumulated over all pro- cesses of actual time step until call of this subroutine
<pre>pxtm1(kbdim,klev,ktrac)</pre>	double prec.	inout	tracer mass or molar mixing ratio with respect to dry air at center of model laws at time step $t = \Delta t$
<pre>pxtte(kbdim,klev,ktrac)</pre>	double prec.	inout	tendency of tracer mass or molar mix- ing ratio with respect to dry air at cen- ter of model layers accumulated over all processes of actual time step until call of this subroutine
<pre>paclc(kbdim,klev)</pre>	double prec.	in	cloud fraction at center of model layers at time step $t$
ppbl(kbdim)	double prec.	in	model layer index of geometrically highest model layer of planetary boundary layer converted to a real number at time $t$
loland(kbdim)	double prec.	in	logical land mask including glaciers
loglac(kbdim)	double prec.	in	logical glacier mask

# Table 3.9: Parameters of $physc_subm_2$ — continued

## $3.4.2.10 \quad Interface \ of \ {\tt cuflx_subm}$

## Listing 3.20: cuflx_subm

SUBROUTINE	cuflx_subm(	(kbdim, pxtenh, pmfu,	kproma, pxtu, pmfuxt,	klev, prhou,	ktop,	krow,	& & &
		pmlwc,	pmiwc,	pmratepr,	pmrateps	,	&
		pfrain,	pfsnow,	pfevapr,	pfsubls,	,	&
		paclc,	pmsnowacl	- ,			&
		ptu,	pdpg,				&
		pxtte					)
INTEGER,	INTENT(in)	:: 1	kbdim, kpi	coma, klev	, ktop,	&	
		]	krow				
REAL(dp),	INTENT(in)	) :: I	odpg(kbdin	n,klev),		&	
		]	pmratepr(]	kbdim,klev	r),	&	
		]	pmrateps(]	kbdim,klev	r),	&	
		]	pmsnowacl	(kbdim,kle	ev),	&	
		]	otu(kbdim	,klev),		&	
		]	ofrain(kbo	dim,klev),		&	
		]	ofsnow(kbo	dim,klev),		&	
		]	ofevapr(k)	odim,klev)	,	&	
		]	ofsubls(k)	odim,klev)	,	&	
		]	omfu(kbdin	n,klev),		&	

			<pre>paclc(kbdim,klev),</pre>	&
			prhou(kbdim,klev)	
REAL(dp),	INTENT(inout)	::	<pre>pxtte(kbdim,klev,ntrac),</pre>	&
			pmlwc(kbdim,klev),	&
			pmiwc(kbdim,klev),	&
			<pre>pxtenh(kbdim,klev,ntrac),</pre>	&
			<pre>pxtu(kbdim,klev,ntrac),</pre>	&
			<pre>pmfuxt(kbdim,klev,ntrac)</pre>	

name	type	intent	description
kbdim	integer	in	maximum length of block of geographi- cal longitudes (one longitude block can contain grid cells of various geographi- cal latitudes)
kproma	integer	in	actual length of block of geographi- cal longitudes (one longitude block can contain grid cells of various geographi- cal latitudes)
klev	integer	in	number of model levels (layers)
ktop	integer	in	Could be the minimum model layer in- dex of cloud top layers over one block. In fact, it is set to 1 in cuflx
<pre>pxtenh(kbdim,klev,ntrac)</pre>	double prec.	inout	tracer mass or molar mixing ratio with respect to dry air at center of model layers at time step $t + \Delta t$
pxtu(kbdim,klev,ntrac)	double prec.	inout	tracer mass mixing ratio with respect to cloud water at center of model layers in the liquid or solid cloud water phase at time step $t + \Delta t$
prhou(kbdim,klev)	double prec.	in	dry air density at center of model layers at time step $t + \Delta t$
pmfu(kbdim,klev)	double prec.	in	convective air mass flux at center of model layers at time $t$
<pre>pmfuxt(kbdim,klev,ntrac)</pre>	double prec.	inout	net tracer mass flux due to convective transport and wet deposition at center of model layers at time step $t + \Delta t$ on exit (in mass mixing ratio per time)
pmlwc(kbdim,klev)	double prec.	inout	liquid water content (mass of liquid wa- ter per mass of dry air) at center of model layers at time $t + \Delta t$ on exit
pmiwc(kbdim,klev)	double prec.	inout	ice water content (mass of water ice per mass of dry air) at center of model layers at time $t + \Delta t$ on exit

Table 3.10: Parameter list of arguments passed to cuflx_subm

table continued on next page

pmratepr(kbdim,klev)	double prec.	in	rain formation rate in mass water per
			mass dry air converted to rain at center
			of model layers at time step $t$
pmrateps(kbdim,klev)	double prec.	in	ice formation rate in mass water per
			mass dry air converted to snow at cen-
			ter of model layers at time step $t$
pfrain(kbdim,klev)	double prec.	$\operatorname{in}$	rain flux at centers of model layers per
			grid box area at time $t$ , evaporation not
			taken into account
pfsnow(kbdim,klev)	double prec.	$\operatorname{in}$	snow flux at centers of model layers per
			grid box area at time $t$ , evaporation not
			taken into account
pfevapr(kbdim,klev)	double prec.	$\operatorname{in}$	evaporation of rain at centers of model
			layers per grid box area at time $t$
pfsubls(kbdim,klev)	double prec.	$\operatorname{in}$	sublimation of snow at centers of model
			layers per grid box area at time $t$
paclc(kbdim,klev)	double prec.	in	cloud cover at center of model layer at
			time step $t$
pmsnowaclc(kbdim,klev)	double prec.	$\operatorname{in}$	accretion rate of snow at center of
			model layer at time step $t$
ptu(kbdim,klev)	double prec.	$\operatorname{in}$	temperature at center of model layer at
			time step $t - \Delta t$
pdpg(kbdim,klev)	double prec.	$\operatorname{in}$	geopotential height at center of model
			level
<pre>pxtte(kbdim,klev,ktrac)</pre>	double prec.	$\operatorname{inout}$	tendency of tracer mass or molar mix-
			ing ratio with respect to dry air at cen-
			ter of model layers accumulated over all
			processes of actual time step until call
			of this subroutine

Table 3.10: Parameters of cuflx_subm — continued

# 3.4.2.11 Interface of cloud_subm

## Listing 3.21: cloud_subm

SUBROUTINE	cloud_subm(				&
	kproma,	kbdim,	klev,	ktop,	&
	krow,				&
	pmlwc,	pmiwc,	pmratepr,	pmrateps,	&
	pfrain,	pfsnow,	pfevapr,	pfsubls,	&
	pmsnowacl,	paclc,	ptm1,	ptte,	&
	pxtm1,	pxtte,	paphp1,	papp1,	&
	prhop1,	pclcpre)			
INTEGER,	INTENT(in)	:: kproma	ì		
INTEGER,	INTENT(in)	:: kbdim			
INTEGER,	INTENT(in)	:: klev			
INTEGER,	INTENT(in)	:: ktop			

INTEGER,	INTENT(in)	::	krow	
REAL(dp),	INTENT(in)	::	pclcpre	(kbdim,klev)
REAL(dp),	INTENT(in)	::	pfrain	(kbdim,klev)
REAL(dp),	INTENT(in)	::	pfsnow	(kbdim,klev)
REAL(dp),	INTENT(in)	::	pfevapr	(kbdim,klev)
REAL(dp),	INTENT(in)	::	pfsubls	(kbdim,klev)
REAL(dp),	INTENT(in)	::	pmsnowacl	(kbdim,klev)
REAL(dp),	INTENT(in)	::	ptm1	(kbdim,klev)
REAL(dp),	INTENT(in)	::	ptte	(kbdim,klev)
REAL(dp),	INTENT(in)	::	prhop1	(kbdim,klev)
REAL(dp),	INTENT(in)	::	papp1	(kbdim,klev)
REAL(dp),	INTENT(in)	::	paphp1	(kbdim,klev+1)
REAL(dp),	INTENT(inout)	::	paclc	(kbdim,klev)
REAL(dp),	INTENT(inout)	::	pmlwc	(kbdim,klev)
REAL(dp),	INTENT(inout)	::	pmiwc	(kbdim,klev)
REAL(dp),	INTENT(inout)	::	pmratepr	(kbdim,klev)
REAL(dp),	INTENT(inout)	::	pmrateps	(kbdim,klev)
REAL(dp),	INTENT(in)	::	pxtm1	(kbdim,klev,ntrac)
REAL(dp),	INTENT(inout)	::	pxtte	(kbdim,klev,ntrac)

Table 3.11: Parameter list of arguments passed to cloud_subm

	4	• • • • •	
name	type	intent	description
kproma	integer	in	actual length of block of geographi-
			cal longitudes (one longitude block can
			contain grid cells of various geographi-
			cal latitudes)
kbdim	integer	in	maximum length of block of geographi-
			cal longitudes (one longitude block can
			contain grid cells of various geographi-
			cal latitudes)
klev	integer	in	number of model levels (layers)
ktop	integer	in	Could be the minimum model layer in-
-	0		dex of cloud top layers over one block.
			In fact, it is set to 1 in cuflx
krow	integer	in	index number of block of geographical
	<u> </u>		longitudes
pmlwc(kbdim,klev)	double prec.	inout	liquid water content (mass of liquid wa-
			ter per mass of dry air) at center of
			model layers at time $t + \Delta t$ on exit
pmiwc(kbdim,klev)	double prec.	inout	ice water content (mass of water ice per
			mass of dry air) at center of model lay-
			ers at time $t + \Delta t$ on exit
pmratepr(kbdim,klev)	double prec.	inout	rain formation rate in mass water per
			mass dry air converted to rain at center
			of model layers at time step $t$
			table continued on next page

pmrateps(kbdim,klev)	double prec.	inout	ice formation rate in mass water per mass dry air converted to snow at cen- ter of model layers at time step $t$
pfrain(kbdim,klev)	double prec.	in	rain flux at centers of model layers per grid box area at time $t$ , evaporation not taken into account
pfsnow(kbdim,klev)	double prec.	in	snow flux at centers of model layers per grid box area at time $t$ , evaporation not taken into account
pfevapr(kbdim,klev)	double prec.	in	evaporation of rain at centers of model layers per grid box area at time $t$
pfsubls(kbdim,klev)	double prec.	in	sublimation of snow at centers of model layers per grid box area at time $t$
<pre>pmsnowaclc(kbdim,klev)</pre>	double prec.	in	accretion rate of snow at center of model layer at time step $t$
<pre>paclc(kbdim,klev)</pre>	double prec.	inout	cloud cover at center of model layer at time step $t$
ptm1(kbdim,klev)	double prec.	in	temperature at center of model layers at time step $t - \Delta t$
ptte(kbdim,klev)	double prec.	in	temperature tendency at center of model layers accumulated over all pro- cesses of actual time step until call of this subroutine
<pre>pxtm1(kbdim,klev,ntrac)</pre>	double prec.	in	tracer mass or molar mixing ratio with respect to dry air at center of model layers at time step $t - \Delta t$
<pre>pxtte(kbdim,klev,ntrac)</pre>	double prec.	inout	tendency of tracer mass or molar mix- ing ratio with respect to dry air at cen- ter of model layers accumulated over all processes of actual time step until call of this subroutine
<pre>paphp1(kbdim,klev+1)</pre>	double prec.	in	pressure of dry air at interfaces between model layers at prognostic time step $t + \Delta t$
<pre>papp1(kbdim,klev)</pre>	double prec.	in	pressure of dry air at center of model layers at time step $t + \Delta t$
prhop1(kbdim,klev)	double prec.	in	dry air density at center of model layers at time step $t + \Delta t$
<pre>pclcpre(kbdim,klev)</pre>	double prec.	in	fraction of grid box covered by precipi- tation at time step $t$

Table 3.11: Parameters of cloud_subm —  $\operatorname{continued}$ 

3.4.2.12 Interface of physc_subm_3

Listing 3.22: physc_subm_3

SUBROUTINE	physc_su	ıbm_3					&	
	(kproma,	kbdim,	klev,	klevp1,	ktrac,	krow,	&	

	paphm1,	papm1,	pap	hp1, papp	1,	&
	ptm1,	ptte,	pts	urf,		&
	pqm1,	pqte,	-			&
	pxlm1,	pxlte,	pxi	m1, pxite	,	&
	pxtm1,	pxtte,				&
	pgeom1,	pgeohm1	,			&
	paclc,					&
	ppbl,	pvervel	,			&
	loland,	loglac				)
INTEGER,	INTENT	(in)	::	kproma		
INTEGER,	INTENT	(in)	::	kbdim		
INTEGER,	INTENT	(in)	::	klev		
INTEGER,	INTENT	(in)	::	klevp1		
INTEGER,	INTENT	(in)	::	ktrac		
INTEGER,	INTENT	(in)	::	krow		
REAL(dp),	INTENT	(in)	::	paphm1	(kbdim,klevp1)	
REAL(dp),	INTENT	(in)	::	papm1	(kbdim,klev)	
REAL(dp),	INTENT	(in)	::	paphp1	(kbdim,klevp1)	
REAL(dp),	INTENT	(in)	::	papp1	(kbdim,klev)	
REAL(dp),	INTENT	(in)	::	ptm1	(kbdim,klev)	
REAL(dp),	INTENT	(inout)	::	ptte	(kbdim,klev)	
REAL(dp),	INTENT	(in)	::	ptsurf	(kbdim)	
REAL(dp),	INTENT	(in)	::	pqm1	(kbdim,klev)	
REAL(dp),	INTENT	(inout)	::	pqte	(kbdim,klev)	
REAL(dp),	INTENT	(in)	::	pxlm1	(kbdim,klev)	
REAL(dp),	INTENT	(inout)	::	pxlte	(kbdim,klev)	
REAL(dp),	INTENT	(in)	::	pxim1	(kbdim,klev)	
REAL(dp),	INTENT	(inout)	::	pxite	(kbdim,klev)	
REAL(dp),	INTENT	(inout)	::	pxtm1	(kbdim,klev,ktra	lc)
REAL(dp),	INTENT	(inout)	::	pxtte	(kbdim,klev,ktra	lc)
REAL(dp),	INTENT	(in)	::	pgeom1	(kbdim,klev)	
REAL(dp),	INTENT	(in)	::	pgeohm1	(kbdim,klevp1)	
REAL(dp),	INTENT	(in)	::	paclc	(kbdim,klev)	
REAL(dp),	INTENT	(in)	::	ppbl	(kbdim)	
REAL(dp),	INTENT	(in)	::	pvervel	(kbdim,klev)	
LOGICAL,	INTENT	(in)	::	loland	(kbdim)	
LOGICAL,	INTENT	(in)	::	loglac	(kbdim)	

Table 3.12: Parameter list of arguments passed to physc_subm_3

name	type	intent	description
kproma	integer	in	actual length of block of geographi- cal longitudes (one longitude block can contain grid cells of various geographi- cal latitudes)

table continued on next page

kbdim	integer	in	maximum length of block of geographi- cal longitudes (one longitude block can contain grid cells of various geographi-
klov	integer	in	cal latitudes) number of model levels (lavers)
klevn1	integer	in	number of lavers plus one
ktrac	integer	in	number of tracers
krow	integer	in	index number of block of geographical longitudes
paphm1(kbdim,klevp1)	double prec.	in	pressure of dry air at interfaces between model layers at time step $t - \Delta t$
papm1(kbdim,klev)	double prec.	in	pressure of dry air at center of model layers at time step $t - \Delta t$
paphp1(kbdim,klevp1)	double prec.	in	pressure of dry air at interfaces between model layers at prognostic time step $t + \Delta t$
papp1(kbdim,klev)	double prec.	in	pressure of dry air at center of model layers at time step $t + \Delta t$
ptm1(kbdim,klev)	double prec.	in	temperature at center of model layers at time step $t - \Delta t$
ptte(kbdim,klev)	double prec.	inout	temperature tendency at center of model layers accumulated over all pro- cesses of actual time step until call of this subroutine
ptsurf(kbdim)	double prec.	in	surface temperature at time step $t$
pqm1(kbdim,klev)	double prec.	in	specific humidity (with respect to dry air) at center of model layers at time step $t - \Delta t$
pqte(kbdim,klev)	double prec.	inout	tendency of specific humidity (with re- spect to dry air) at center of model lay- ers accumulated over all processes of actual time step until call of this sub- routine
pxlm1	double prec.	in	cloud liquid water content (mass of liq- uid water per mass of dry air) at center of model layers at time step $t - \Delta t$
pxlte	double prec.	inout	cloud liquid water tendency (rate of change of mass of liquid water per mass of dry air) at center of model layers ac- cumulated over all processes of actual time step until cell of this subreuting
pxim1	double prec.	in	cloud water ice content (mass of wa- ter ice per mass of dry air) at center of model layers at time step $t - \Delta t$

Table 3.12: Parameters of physc_subm_3 — continued

table continued on next page

pxite	double prec.	inout	cloud water ice tendency (rate of change of mass of ice water per mass of dry air) at center of model layers ac- cumulated over all processes of actual time step until call of this subroutine
<pre>pxtm1(kbdim,klev,ktrac)</pre>	double prec.	inout	tracer mass or molar mixing ratio with respect to dry air at center of model layers at time step $t - \Delta t$
<pre>pxtte(kbdim,klev,ktrac)</pre>	double prec.	inout	tendency of tracer mass or molar mix- ing ratio with respect to dry air at cen- ter of model layers accumulated over all processes of actual time step until call of this subroutine
pgeom1(kbdim,klev)	double prec.	in	geopotential at center of model layers at time step $t-\Delta t$
pgeohm1(kbdim,klevp1)	double prec.	in	geopotential at interfaces between model layers at time step $t - \Delta t$
<pre>paclc(kbdim,klev)</pre>	double prec.	in	cloud cover at center of model layer at time step $t$
ppbl(kbdim)	double prec.	in	model layer index of geometrically highest model layer of planetary boundary layer converted to a real number at time $t$
<pre>pvervel(kbdim,klev)</pre>	double prec.	in	large scale vertical velocity at model center at time step $t$
loland(kbdim)	double prec.	in	logical land mask including glaciers
loglac(kbdim)	double prec.	in	logical glacier mask

Table 3.12: Parameters of physc_subm_3 — continued

# $3.4.2.13 \quad Interface \ of \ {\tt physc_subm_4}$

# Listing 3.23: physc_subm_4

SUBROUTINE	physc_subm_4	(kproma,	kbdim,	klev,	&
		klevp1,	ktrac,	krow,	&
		paphm1,	pfrl,	pfrw,	&
		pfri,	loland,	pxtm1,	&
		pxtte)			
INTEGER, krow	INTENT(in)	:: kproma	, kbdim,	klev, klevp1,	ktrac,
REAL(dp)	, INTENT(in)	:: paphm1	(kbdim,kl	evp1), &	
-		pfrl(k	proma),	&	
		pfrw(k	proma),	&	
		pfri(k	proma),	&	
		pxtm1(]	kbdim,kle	v,ktrac)	
REAL(dp)	, INTENT(inout	.)::pxtte(]	kbdim,kle	v,ktrac)	
LOGICAL,	INTENT(in)	:: loland	(kproma)		

		•	
name	type	intent	description
kproma	integer	in	actual length of block of geographi-
			cal longitudes (one longitude block can
			contain grid cells of various geographi-
			cal latitudes)
kbdim	integer	in	maximum length of block of geographi-
			cal longitudes (one longitude block can
			contain grid cells of various geographi-
			cal latitudes)
klev	integer	in	number of model levels (layers)
klevp1	integer	in	number of layers plus one
ktrac	integer	in	number of tracers
krow	integer	in	index number of block of geographical
			longitudes
<pre>paphm1(kbdim,klevp1)</pre>	double prec.	in	pressure of dry air at interfaces between
			model layers at time step $t - \Delta t$
pfrl(kbdim)	double prec.	in	land fraction
pfrw(kbdim)	double prec.	in	surface water fraction
pfri(kbdim)	double prec.	in	surface ice fraction
loland(kbdim)	double prec.	in	logical land mask including glaciers
<pre>pxtm1(kbdim,klev,ktrac)</pre>	double prec.	in	tracer mass or molar mixing ratio with
			respect to dry air at center of model
			layers at time step $t - \Delta t$
<pre>pxtte(kbdim,klev,ktrac)</pre>	double prec.	inout	tendency of tracer mass or molar mix-
			ing ratio with respect to dry air at cen-
			ter of model layers accumulated over all
			processes of actual time step until call
			of this subroutine

Table 3.1	3:	Parameter	list	of	arguments	passed	$\operatorname{to}$	$physc_subm_4$

#### 3.4.2.14 Interface of free_subm_memory

#### Listing 3.24: free_subm_memory

### SUBROUTINE free_subm_memory

This subroutine has no parameter list.

### **3.4.3** Tracer interface

Tracer fields are constituents transported with the flow of air in the atmospheric model. In addition to the transport, they are subject to several processes such as convection, diffusion, emission, deposition and chemical conversion. Horizontal and vertical transport is carried out by the atmospheric model and some standard processes can be performed by the atmospheric model as well. Other processes which are specific for the tracer must be calculated by the sub-model. The tracer interface is a collection of subroutines that allow the definition and handling of a data structure containing information about tracers. This information comprises the 3-dimensional mass or volume mixing ratio of the tracers but also variables that determine the transport and physical properties of each individual tracer. Tracers within ECHAM6 are represented by a 4-dimensional array (the three spatial dimensions are supplemented by the tracer index) but pointers to individual tracers can be obtained so that details of implementation of the data structure remains hidden. A one dimensional array of a derived data type holds the meta-information. In the restart file the tracers are identified by name, so that restarts can be continued with different sets of tracers if required. Reading and writing of the tracers to the rerun file and to the output stream is based on the output stream and memory buffer facilities described in section 3.2.

#### 3.4.3.1 Request a new tracer

A new tracer with name 'A' is requested from a module with name 'my_module' by a call to the routine new_tracer of mo_tracer.f90:

```
call new_tracer ('A', 'my_module', idx)
```

Tracer properties are specified by optional arguments of the **new_tracer** subroutine. The interface is as follows:

[,idx] [,nwrite] [,longname] [,units][,moleweight] [,code] [,table] [,bits] [,nbudget][,burdenid] [,ninit] [,vini] [,nrerun] [,nint][,ntran] [,nfixtyp] [,nvdiff] [,nconv] [,nwetdep][,ndrydep] [,nsedi] [,nemis] [,tdecay] [,nphase][,ndrydep] [,nsedi] [,nemis] [,tdecay] [,nphase][,nsoluble] [,mode] [,myflag] [,ierr])nametypeintentdefaultfunction*descriptionidentification of the tracer :namecharacter(len=*)inesnamecharacter(len=*)inesspid]integerinesspecies index[spid]integerinesspecies index	SUBROUTINE r	new_tracer	name,	modulename	[,spid] [	,subname] [,trtype]
[,moleweight] [,code] [,table] [,bits] [,nbudget] [,burdenid] [,ninit] [,vini] [,nrerun] [,nint] [,ntran] [,nfixtyp] [,nvdiff] [,nconv] [,nwetdep] [,ndrydep] [,nsedi] [,nemis] [,tdecay] [,nphase] [,nsoluble] [,mode] [,myflag] [,ierr])nametypeintentdefaultfunction*descriptionidentification of the tracer : namecharacter(len=*)inesname of the tracernamecharacter(len=*)inesname of the tracer[spid]integerinesspecies index			[,idx]	[,nwrite]	[,longname	e] [,units]
[,burdenid] [,ninit] [,vini] [,nrerun] [,nint][,ntran] [,nfixtyp] [,nvdiff] [,nconv] [,nwetdep][,ndrydep] [,nsedi] [,nemis] [,tdecay] [,nphase][,nsoluble] [,mode] [,myflag] [,ierr])nametypeintentdefaultfunction*descriptionidentification of the tracer :namecharacter(len=*)inesnamecharacter(len=*)inesnamecharacter(len=*)inesnamecharacter(len=*)inesspid]integerinesspecies index[spid]integerinesspecies index			[,mole	weight] [,c	ode] [,tal	ble] [,bits] [,nbudget]
[,ntran] [,nfixtyp] [,nvdiff] [,nconv] [,nwetdep] [,ndrydep] [,nsedi] [,nemis] [,tdecay] [,nphase] [,nsoluble] [,mode] [,myflag] [,ierr])nametypeintentdefaultfunction*descriptionidentification of the tracer : namecharacter(len=*)inesnamecharacter(len=*)inesnamecharacter(len=*)inesnamecharacter(len=*)inesspid]integerinesspecies index[spid]integerinesspecies index			[,burd	enid] [,nin	it] [,vin:	i] [,nrerun] [,nint]
[,ndrydep] [,nsedi] [,nemis] [,tdecay] [,nphase] [,nsoluble] [,mode] [,myflag] [,ierr])nametypeintentdefaultfunction*descriptionidentification of the tracer : namecharacter(len=*)inesnamecharacter(len=*)inesnamecharacter(len=*)inesnamecharacter(len=*)inesspid]integerinesspecies index[spid]integerinesspecies index			[,ntra	n] [,nfixty	p] [,nvdii	ff] [,nconv] [,nwetdep]
[,nsoluble][,mode][,myflag][,ierr])nametypeintentdefaultfunction*descriptionidentification of the tracer : </td <td></td> <td></td> <td>[,ndry</td> <td>dep] [,nsed</td> <td>i] [,nemi:</td> <td>s] [,tdecay] [,nphase]</td>			[,ndry	dep] [,nsed	i] [,nemi:	s] [,tdecay] [,nphase]
name       type       intent       default       function*       description         identification of the tracer :			[,nsol	uble] [,mod	e] [,myfla	ag] [,ierr])
identification of the tracer :         name       character(len=*)         modulename       character(len=*)         in       es         name       character(len=*)         in       es         ing the tracer         [spid]       integer         in       es         species index	name	type	intent	default	function*	description
name       character(len=*)       in       es       name of the tracer         modulename       character(len=*)       in       es       name of the module request-         [spid]       integer       in       es       species index         [spid]       integer       in       es       species index	identificatio	n of the tracer :				
modulename       character(len=*)       in       es       name of the module requesting the tracer         [spid]       integer       in       es       species index         [swhwawal       sharacter(len=*)       in       es       species index	name	character(len=*)	in		es	name of the tracer
[spid] integer in es species index	modulename	character(len=*)	in		es	name of the module request-
[spid] integer in es species index						ing the tracer
$\begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & $	[spid]	integer	in		es	species index
[subname] character(len=") in es optional for 'colored' tracers	[subname]	character(len=*)	in		es	optional for 'colored' tracers
[trtype] integer in es tracer type	[trtype]	integer	in		es	tracer type
[idx] integer out es index of the tracer	[idx]	integer	out		es	index of the tracer
postprocessing output :	postprocessi	ing output :				
[nwrite] integer in ON p flag to print the tracer	[nwrite]	integer	in	ON	р	flag to print the tracer
[longname] character(len=*) in "" p long name	[longname]	character(len=*)	in	""	p	long name
[units] character(len=*) in "" p physical units	[units]	character(len=*)	in	""	р	physical units
[moleweight] real in 0. p molecular weight	[moleweight]	real	in	0.	р	molecular weight
[code] integer in 0 p GRIB code	[code]	integer	in	0	р	GRIB code
[table] integer in 131 p GRIB table	[table]	integer	in	131	р	GRIB table
[bits] integer in 16 p number of GRIB encoding	[bits]	integer	in	16	р	number of GRIB encoding
bits		0			1	bits
[nbudget] integer in OFF $ep%$ budget flag	[nbudget]	integer	$\operatorname{in}$	OFF	$\mathrm{ep}\%$	budget flag
[burdenid] integer in e% burden diagnostics number	[burdenid]	integer	in		m e%	burden diagnostics number
initialization and rerun :	initializatior	and rerun :				
[ninit] integer in <b>RESTART+</b> e initialization flag	[ninit]	integer	in	RESTART+	e	initialization flag
CONSTANT				CONSTANT		
[vini] real in 0. e initialization value	[vini]	real	in	0.	e	initialization value
[nrerun] integer in ON e restart flag	[nrerun]	integer	in	ON	e	restart flag
transport and other processes :	transport ar	nd other processe	es:			
[nint] integer in e integration flag	[nint]	integer	in		e	integration flag
[ntran] integer in <b>TRANSPORT</b> e% transport switch	[ntran]	integer	in	TRANSPORT	m e%	transport switch
[nfixtyp] integer in $1 e\%$ type of mass fixer	[nfixtyp]	integer	in	1	m e%	type of mass fixer
[nvdiff] integer in ON e vertical diffusion flag	[nvdiff]	integer	in	ON	e	vertical diffusion flag
[nconv] integer in ON e convection flag	[nconv]	integer	in	ON	е	convection flag
[nwetdep] integer in OFF e wet deposition flag	[nwetdep]	integer	in	OFF	e	wet deposition flag
[ndrydep] integer in OFF e% dry deposition flag	[ndrydep]	integer	in	OFF	m e%	dry deposition flag
[nsedi] integer in $OFF e\%$ sedimentation flag	[nsedi]	integer	in	OFF	m e%	sedimentation flag
[nemis] integer in $OFF e\%$ surface emission flag	[nemis]	integer	in	OFF	m e%	surface emission flag
[tdecay] real in 0. e exponential decay time	[tdecay]	real	in	0.	e	exponential decay time
attributes interpreted by the submodel :	attributes in	nterpreted by the	submo	del :		
[nphase] integer in 0 s phase indicator	[nphase]	integer	in	0	S	phase indicator
[nsoluble] integer in s solubility flag	[nsoluble]	integer	in		s	solubility flag
[mode] integer in 0 s mode indicator	[mode]	integer	in	0	s	mode indicator
[myflag(:)] type(t_flag) in (",0.) s user defined flags	[myflag(:)]	type(t_flag)	in	(", 0.)	s	user defined flags
miscellaneous arguments :	miscellaneou	is arguments :		. ,		
[ierr] integer out OK=0 s error return value	[ierr]	integer	out	OK=0	S	error return value

* attributes interpreted by ECHAM (e), by the submodel (s), by the postprocessing module (p), not yet implemented (%).

In general, integer values are chosen to represent the flags in order to allow different choices: 0: OFF

- 1: ON, standard action
- 2: ..., alternative action  $\mathbf{1}$

. . .

tag: specific action performed by the sub-model.

Small numbers indicate that some kind of standard action shall be performed by ECHAM. Higher tag values indicate that the process will be handled by the submodel. For the following actual arguments, valid values are defined by parameter statements (see mo_tracdef.f90):

argument	values	description
	OK, OFF, ON	universal values
ntran	NO_ADVECTION, SEMI_LAGRANGIAN, SPITFIRE, TPCORE	transport flag
ninit	INITIAL, RESTART, CONSTANT, PERIODIC	initialization flag
nsoluble	SOLUBLE, INSOLUBLE	soluble flag
nphase	GAS, AEROSOL, GAS_OR_AEROSOL, AEROSOLMASS,	phase indicator
	AEROSOLNUMBER, UNDEFINED	
code	AUTO	automatically chose
		unique GRIB code
ierr	OK,NAME_USED,NAME_MISS,TABLE_FULL	error return value (can-
		not be used currently)

Tracer properties: Identification of the tracer and sub-model. Each tracer is identified by a unique name and optionally by a subname in case of colored tracers. In the postprocessing file colored tracers appear with the name name_subname. Values of optional arguments provided for the corresponding non-colored tracer (without argument subname) are used for the colored tracer as well (despite the GRIB code number).

The sub-model identifies itself by a unique character string modulename. idx is the index of the new tracer in the global arrays XT, XTM1, trlist.

**Tracer properties:** Postprocessing flags. The flag nwrite (default ON) determines, whether the tracer is written to the standard output stream. A separate file with name STANDARDFILENAME_tracer for GRIB, or STANDARDFILENAME_tracer.nc for NetCDF format, is written. The default file format GRIB can be changed to NetCDF by setting trac_filetype=2 in the namelist runctl (see Tab. 2.12 of section 2.2.1.14).

If present, the attributes longname, units and moleweight are written to the NetCDF file. Within GRIB files, fields are identified by a GRIB code number which must be given as argument code. Note that codes 129 and 152 should not be used because they are attributed to surface pressure and geopotential height. A predefined value AUTO is accepted indicating automatic generation of unique GRIB code numbers. For GRIB files, a code file STANDARDFILENAME_tracer.codes is written to associate code numbers with tracer names. For the tracers, a default GRIB table number 131 is chosen for tracer output. By default, 16 bits are used for encoding in GRIB format.

**Tracer properties:** Initialization and rerun. The nrerun flag (default=ON) indicates, whether the tracer variable shall be read and written from/to the rerun file. The tracers are identified by name in the rerun (NetCDF) file, so that they can be read selectively. The initialization flag ninit is used to specify the initialization procedure in more detail: Valid values are one of INITIAL (read from initial file, this must be done by the submodel), RESTART

(read from restart file), CONSTANT (set to the initial value vini) or a combination (e.g. RESTART+CONSTANT) to indicate that the quantity is read from the restart file in case of a rerun but set to a predefined value otherwise.

Tracer properties: Transport and other processes. Tracer transport and the impact of certain other processes is calculated by ECHAM. The flags nint, ntran, nfixtyp, nvdiff, nconv, nwetdep, nsedi, ndrydep, nemis, tdecay are meant to switch ON or OFF the respective processes (not fully implemented currently).

A value of  $tdecay \neq 0$  leads to an exponential decay of the tracer with time.

Tracer properties: Attributes interpreted by the submodel. The following flags are not used by ECHAM. They are reserved to be used by the sub-models: nphase, nsoluble, mode and myflag. myflag is an array of pairs of character strings and real values.

### 3.4.3.2 Access to tracers with get_tracer

The routine **get_tracer** returns the references to tracers already defined.

Example:

```
Listing 3.25: get_tracer
```

```
CALL get_tracer ('SO2',idx=index,modulename=modulename)
IF (ierr==0) THEN
PRINT *, 'Using tracer SO2 from module',modulename
ELSE
! eg. read constant tracer field
...
ENDIF
```

The interface of subroutine get_tracer is:

SUBROUTINE get_tracer		(name [,subname] [,modulename] [,idx] [,pxt]					
		[,pxtm1	[,pxtm1] [,ierr])				
name	type	intent	description				
name	character(len=*)	in	name of the tracer				
[subname]	character(len=*)	in	subname of the tracer				
[modulename]	character(len=*)	out	name of requesting module				
[idx]	integer	out	index of the tracer				
[pxt(:,:,:)]	real	pointer	pointer to the tracer field				
[pxtm1(:,:,:)]	real	pointer	pointer to the tracer field at previ-				
			ous time step				
[ierr]	integer	out	error return value $(0=OK, 1=tracer)$				
			not defined)				

If the optional parameter ierr is not given and the tracer is not defined the program will abort. Note that references (pxt, pxtm1) to the allocated memory cannot be obtained before all tracers are defined and the respective memory is allocated in the last step of tracer definition.

### 3.4.3.3 Tracer list data type

Summary information on the tracers is stored in a global variable trlist. Attributes of individual tracers are stored in the component array trlist% ti(:). The definitions of the respective data types t_trlist and t_trinfo are given below:

```
Listing 3.26: t_trlist
```

```
! Basic data type definition for tracer info list
TYPE t_trlist
 !
 ! global tracer list information
 ! number of tracers specified
 INTEGER
 :: ntrac
 INTEGER
 :: anyfixtyp
 ! mass fixer types used
 INTEGER
 :: anywetdep
 ! wet deposition requested
 ! for any tracer
 INTEGER
 :: anydrydep
 ! wet deposition requested
 ! for any tracer
 INTEGER
 :: anysedi
 ! sedimentation requested
 ! for any tracer
 INTEGER
 ! surface emission flag
 :: anysemis
 ! for any tracer
 INTEGER
 :: anyconv
 ! convection flag
 :: anyvdiff ! vertical diffusion flag
 INTEGER
 :: anyconvmassfix !
 INTEGER
 ! number of advected tracers
 INTEGER
 :: nadvec
 :: oldrestart ! true to read old restart
 LOGICAL
 format
 !
 ! individual information for each tracer
 TYPE (t_trinfo) :: ti (jptrac) ! Individual settings
 !for each tracer
 !
 ! reference to memory buffer info
 1
 TYPE (t_p_mi) :: mi (jptrac) ! memory buffer information
 !for each tracer
 TYPE (memory_info), POINTER :: mixt ! memory buffer
 ! information for XT
 TYPE (memory_info), POINTER :: mixtm1 ! memory buffer
 ! information for XTM1
END TYPE t_trlist
```

The component ntrac gives the total number of tracers handled by the model. The components any... are derived by a bitwise OR of the corresponding individual tracer flags. Individual flags are stored in component ti of type t_trinfo. They reflect the values of the arguments passed to subroutine new_tracer.

Listing 3.27: t_trinfo

TYPE t_trinfo

```
!
! identification of transported quantity
1
CHARACTER(len=ln) :: basename ! name (instead of xt..)
CHARACTER(len=ln) :: subname ! optional for
 !'colored' tracer
CHARACTER(len=ln) :: fullname ! name_subname
CHARACTER(len=ln) :: modulename ! name of requesting
 ! sub-model
CHARACTER(len=ln) :: units
 ! units
CHARACTER(len=11) :: longname ! long name
CHARACTER(len=11) :: standardname ! CF standard name
 :: trtype ! type of tracer:
INTEGER
 ! O=undef., 1=prescribed,
 ! 2=diagnostic (no transport),
 ! 3=prognostic (transported)
INTEGER
 :: spid
 ! species id (index in
 ! speclist) where physical/chem.
 ! properties are defined
 :: nphase ! phase (1=GAS, 2=AEROSOLMASS,
INTEGER
 ! 3=AEROSOLNUMBER,...)
 :: mode ! aerosol mode or bin number
INTEGER
REAL(dp)
 :: moleweight ! molecular mass (copied
 ! from species upon initialisation)
! Requested resources ...
!
INTEGER :: burdenid ! index in burden diagnostics
!
! Requested resources ...
!
INTEGER :: nbudget ! calculate budgets (default 0)
INTEGER :: ntran ! perform transport (default 1)
INTEGER :: nfixtyp ! type of mass fixer (default 1)
INTEGER :: nconvmassfix ! use xt_conv_massfix in cumastr
INTEGER :: nvdiff ! vertical diffusion flag
 ! (default 1)
INTEGER :: nconv
 ! convection flag (default 1)
INTEGER :: ndrydep
 ! dry deposition flag:
 ! O=no drydep,
 ! 1=prescribed vd,
 ! 2=Ganzeveld
INTEGER :: nwetdep ! wet deposition flag (default 0)
INTEGER :: nsedi
 ! sedimentation flag (default 0)
REAL :: tdecay
 ! decay time (exponential)
 ! (default 0.sec)
INTEGER :: nemis ! surface emission flag (default 0)
!
! initialization and restart
```

```
INTEGER :: ninit ! initialization request flag
 INTEGER :: nrerun ! rerun flag
 REAL :: vini ! initialization value (default 0.)
 INTEGER :: init ! initialisation method actually used
 !
 ! Flags used for postprocessing
 !
 INTEGER :: nwrite ! write flag (default 1)
 INTEGER :: code
 ! tracer code (default 235...)
 INTEGER :: table ! tracer code table (default 0)
 INTEGER :: gribbits ! bits for encoding (default 16)
 INTEGER :: nint ! integration (accumulation)
 ! flag (default 1)
 !
 ! Flags to be used by chemistry or tracer modules
 1
 INTEGER
 :: nsoluble ! soluble flag (default 0)
 INTEGER:: nsoluble! soluble! lag(defTYPE(t_flag):: myflag(nf) ! user defined flag
 type(time_days) :: tupdatel ! last update time
 type(time_days) :: tupdaten ! next update time
 !
END TYPE t_trinfo
```

The data type t_flag is defined as follows:

Listing 3.28: data type t_flag

TYPE t_flag					
CHARACTER(len=lf)	::	с	!	character stri	ng
REAL	::	v	!	value	
END TYPE t_flag					

The lengths of the character string components are:

Listing 3.29: Length of strings INTEGER, PARAMETER :: ln = 24 ! length of name ! (char) components INTEGER, PARAMETER :: l1 = 256 ! length of ! longname component INTEGER, PARAMETER :: lf = 8 ! length of flag ! character string INTEGER, PARAMETER :: nf = 10 ! number of user ! defined flags INTEGER, PARAMETER :: ns = 20 ! max number of submodels

!