Revisiting Ocean Color algorithms for chlorophyll \(a \) and particulate organic carbon in the Southern Ocean using biogeochemical floats

Nils Haëntjens\(^1\), Emmanuel Boss\(^1\) and Lynne D. Talley\(^2\)

\(^1\)School of Marine Sciences, University of Maine, Orono, Maine, USA, \(^2\)Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA

Abstract

The Southern Ocean (SO) ecosystem plays a key role in the carbon cycle by sinking a major part (43\%) of the ocean uptake of anthropogenic CO\(_2\), and being an important source of nutrients for primary producers. However, undersampling of SO biogeochemical properties limits our understanding of the mechanisms taking place in this remote area. The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project has been deploying a large number of autonomous biogeochemical floats to study the SO (as of December 2016, 74 floats out of 200 have been deployed). SOCCOM floats measurements can be used to extend remote sensing chlorophyll \(a \) (chl \(a \)) and particulate organic carbon (POC) products under clouds or during the polar night as well as adding the depth dimension to the satellite-based view of the SO. Chlorophyll \(a \) concentrations measured by a sensor embedded on the floats and POC concentrations derived from backscattering coefficients were calibrated with samples collected during the floats’ deployment cruise. Float chl \(a \) and POC were compared with products derived from observations of MODIS and VIIRS sensors. We find the Ocean Color Index (OCI) global algorithm to agree well with the matchups (within 9\%, on average, for the Visible Infrared Imaging Radiometer Suite (VIIRS) and 12\%, on average, for the Moderate Resolution Imaging Spectroradiometer Aqua (MODIS)). SO-specific algorithms estimating chl \(a \) are offset by ~45\% south of the Sea Ice Extent Front (~60°S). In addition, POC estimates based on floats agree well with NASA’s POC algorithm.

1. Introduction

The Southern Ocean (SO), the oceanic region between 30°S and Antarctica, occupies 30\% of the world’s oceans but plays a disproportionate role in their biogeochemistry: 43\% of the ocean uptake of anthropogenic CO\(_2\) is taken up in the SO [Frolinger et al., 2015] and it is the source of 75\% of nutrients used by primary producers north of 30°S [Sarmiento et al., 2004]. In realization of its contributions and in light of the lack of year-round data, a consortium of scientists has built a profiling-float-based observatory equipped with state-of-the-art biogeochemical sensors.

The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) is a six-year NSF-funded initiative that received additional funding from NOAA and NASA. SOCCOM floats, deployed in the SO, are typically equipped with CTD, nitrate, oxygen, and pH sensors, as well as sensors that measure light backscattered at 700 nm and chlorophyll \(a \) (chl \(a \)) fluorescence. The latter provides an opportunity to validate space-derived biogeochemical products from another spatially and temporally extensive observation system, Ocean Color (OC). While much of the SO can be observed by OC year around, the regions south of 55°S are not observed for several months of the year due to either low sun angle or absence of sunlight [Behrenfeld et al., 2016].

Since the launch of NASA’s Coastal Zone Color Scanner (CZCS), OC has been used to derive biogeochemical parameters in the SO, in particular chl \(a \) and particulate organic carbon (POC). It has been found, however, that in the SO the globally derived empirical chl \(a \) algorithms are biased. Mitchell and Holm-Hansen [1991] and Sullivan et al. [1993] found a significant (factor of 2.4) underestimate of SO chl \(a \) by the global CZCS algorithm. Dierssen and Smith [2000] found a similar bias (underestimation of ~2) with the Sea-Viewing Wide Field-of-View Sensor’s (SeaWiFS) algorithm. These studies were based on a large database of fluorometrically extracted chl \(a \). Mitchell and Kahu [2009] and Kahu and Mitchell [2010] proposed an algorithm (SPGANT) for the Advanced Earth Observing Satellite (ADEOS), SeaWiFS, and the Moderate Resolution

Received 28 FEB 2017
Accepted 22 JUN 2017
Accepted article online 5 JUL 2017
Published online 24 AUG 2017

© 2017. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Imaging Spectroradiometer *Aqua* (MODIS) satellites, to correct this SO bias. Guinet et al. [2013] have found, using chl *a* fluorometers mounted on elephant seals calibrated with High-Performance Liquid Chromatography (HPLC), that the standard algorithms underestimate chl *a* by ~2 times with MODIS. Finally, Johnson et al. [2013] have found using a large HPLC-based chl *a* data set (~1400 samples) that NASA’s SeaWiFS and MODIS algorithms underestimated chl *a* by a factor of about 3 and 4, respectively, at latitudes south of 35°S and between 20°E and 160°E. Species composition, physiology, and particulate composition were invoked to explain this underestimation [see the review of Dierssen, 2010]. Note, however, that Marrari et al. [2006] observed no significant bias between SeaWiFS’ chl *a* and HPLC chl *a*.

The remoteness of the SO and the limited ability to cover its extent with research expeditions have limited the exercise of satellite and in situ matchups to selected regions and seasons. For example, the bulk (>95%) of the data in Johnson et al. [2013] was collected in a narrow corridor south of Tasmania, located between 140°E and 150°E. In Mitchell and Kahru [2009], the in situ data were collected from 1997 to 2008, primarily during austral summers in the Scotia Sea. Guinet et al. [2013] covered several seasons (December 2007 to February 2011) but were limited to the region south of the Indian Ocean. Wide areas such as the south Pacific Ocean and the southeastern Atlantic Ocean had no matchups in those studies.

Here we use a recently assembled HPLC and POC data set, collected in conjunction with SOCCOM profiling-float deployments on five different SO cruises, to evaluate the performance of NASA’s MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) global algorithms. MODIS and VIIRS are polar orbiting multispectral satellites with visible and infrared detectors to measure top of the atmosphere (TOA) radiance. The products used are derived from the TOA radiance by applying an atmospheric correction [Mobley et al., 2016] and application of community developed algorithms by the NASA Ocean Biology and Biogeochemistry group. In situ HPLC and POC data are used to calibrate sensors (chl *a* fluorescence and scattering around an angle in the back direction) deployed on profiling floats [Johnson et al., 2017]. These calibrated sensors, in turn, are used to assemble a float-OC matchup data set throughout the SO. With this data set, we find no statistically significant bias of NASA’s MODIS and VIIRS algorithms for chl *a* or POC.

2. Methods

2.1. Float Products

Pre-SOCCOM and SOCCOM float profiles from the FloatViz archival data set of 28 November 2016 are used in this study (Table 1). The in situ data used to calibrate the float sensors were collected during the cruises: P16S, A12, SOTS, OOISO, and P15S (Table 2).

The full description of data processing and quality control is provided in Johnson et al. [2017]. Here we provide a shorthand version for the sake of completeness. The chl *a* fluorometers raw data are transformed to engineering units using the manufacturer calibration coefficients, the dark counts are adjusted to avoid signal contamination by fluorescent colored dissolved organic material [Xing et al., 2017], and the profiles are corrected for nonphotochemical quenching [Sackmann et al., 2008; Xing et al., 2011]. The chl *a* fluorescence ratio is adjusted for all the floats together, regrgressing chl *a* fluorescence from floats with total chl *a* from HPLC samples taken during float deployment. Two regressions are shown in Johnson et al. [2017]: a linear regression (slope of 6.44) as commonly used in the literature, and a power law fit. Since the power law fit performs better relative to the HPLC data set and uses the same number of parameters, it is used here to derive chl *a* from the float measurements. The average error for chl *a* estimated from floats is the larger of 0.12 mg m⁻³ or 37% (and the relationship is chl *a*ₘₐₜₐₜ = 0.21(±0.02)×chl *a*ₕₒₒₜ⁰.⁷¹⁴(±0.242)) with standard deviation of the regression coefficients in the parentheses.

The volume scattering function (VSF) around one angle in the backward direction measured by the backscattering sensor is computed using the calibration coefficients of the manufacturer (if darks measured before the deployment of the float are available, they are used instead of the manufacturers’ darks). The VSF of seawater [Zhang et al., 2009] is removed from the VSF at the measured angle in the back direction, which in turn is converted to particulate backscattering (*b*ₕₒₒₜ) with the conversion factor from Sullivan et al. [2013]. An empirical relationship between *b*ₚₒ and POC is built by regressing the POC samples taken during float deployment with the *b*ₚₒ measured during the first profile of the floats [Johnson et al., 2017]. The average error for estimated POC from floats is the larger of 35 mg m⁻³ or...
47% (and the relationship is \(POC = 3.12 \times 10^4(\pm 2.47 \times 10^3) \times b_{\text{bp}}(700) + 3.0(\pm 6.8) \) with standard deviation of the regression coefficients in the parentheses).

2.2. Comparison With Remote Sensing

Chl \(a \) and POC are derived from remote sensing reflectance (\(R_{rs} \)) for both MODIS and VIIRS sensors reprocessing 2014.0 [NASA Goddard Space Flight Center et al., 2014, 2015]. The matchups with float profiles are broadly distributed around Antarctica, mainly south of 45°S as presented in Figure 1, and cover multiple seasonal cycles.

Ocean Color Index (OCI) [Hu et al., 2012], the latest global chl \(a \) algorithm from NASA, is compared to two algorithms specific to the Southern Ocean: SPGANT version 4 [Mitchell and Kahru, 2009; Kahru and Mitchell, 2009; 2010].
2010] and Johnson et al. [2013] (referred as J13, implementation in Table 3) using matchups of MODIS or VIIRS images with float profiles. OCI is a blend of the band ratio algorithm OCx (OC3M or OC3V, for MODIS and VIIRS, respectively) and the color index (CI) algorithm of Hu et al. [2012]; the algorithm transitions between $0.15 < \text{[chl}a] < 0.20 \text{mg m}^{-3}$ (CI at low [chl]a) and OCC at high [chl]a). This algorithm was not used as a default OC algorithm at the time when SPGANTv4 and J13 were built. SPGANTv4 [Mitchell and Kahru, 2009] is used in conjunction with OC3M: for $\text{[chl}a] < = 0.07$ OC3M is used, between $0.07 < \text{[chl}a] < 0.13$ a linear transition between the two algorithms is applied, and for $\text{[chl}a] > = 0.13$ SPGANTv4 is used [Kahru and Mitchell, 2010]. The algorithm of Stramski et al. [2008] is used for POC.

In order to maximize the quality of the comparison between floats and OC, "good quality" matchups are required. Bailey and Werdell [2006] defined these as: a narrow time window (± 3 h) between in situ and satellite records, computed from the mean of a 5×5 pixel box centered on the in situ measurement, and a good atmospheric correction (mask pixels with default level 3 flags on; a description of the flags used by OC is available at: https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/). For our data set, this resulted in only four matchups with MODIS products. Several factors might explain this: the floats’ surface time is not synchronized with NASA satellites’ overpasses, cloud coverage is high all year long in the Southern Ocean, the polar night, or high solar zenith angle (>70°) during several months.

Widening the spatial and temporal window increases the number of matchups at the possible cost of quality, but as mentioned in the report from IOCCG [2011], optical data exhibit large spatial and temporal correlations making them useful for matching-up beyond the narrow window specified above. A spatial correlation analysis (Figure 2) shows that we can increase the number of matchups significantly with a relatively small decrease in correlation by averaging products within an 8 km radius circle and a 24 h window, keeping the same level 2 flags criteria as the “good quality” matchups.

To account for vertical structure of the water column, we optically weight chl a and POC (equation (1)) from floats according to Gordon and Clark [1980] [Werdell and Bailey, 2005; Mueller et al., 2003; Zaneveld et al., 2005],

$$<\text{chl}a> = \frac{\sum e^{-Kd_{z}a_{\text{float}}(z)}}{\sum e^{-Kd_{z}}}$$ \hspace{1cm} (1)

with K_d as the diffuse attenuation coefficient of downwelling irradiance at 490 nm, derived from satellite measurements (with KD2M and KD2V for MODIS and VIIRS, respectively), and z as the depths of the float measurements.

2.3. Matchup Fits and Associated Statistics

Of primary interest is the slope of the linear type II regression (reduced major axis, defined by Ricker [1973]). The regression’s standard deviation (std) of both the slope and offset
are computed following the treatment of Ricker [1973] for a model I regression. The squared Pearson’s linear correlation coefficient (r^2) indicates the proportion of variance explained by a linear dependence between two independent variables, and is defined by

$$ x = \frac{\sum_{i=1}^{n} x_i}{n} \quad y = \frac{\sum_{i=1}^{n} y_i}{n} $$

$$ r^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \times \sum_{i=1}^{n} (y_i - \bar{y})^2}} $$

with n as the number of matchups, x and y the two data sets (in our case, one is the product from the float (y) and the other is the product from the satellite (x)). The root-mean-square deviation (RMSD) was defined by

$$ \text{RMSD} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - x_i)^2}{n}} $$

The root-mean-square relative deviation (RMSRD) is defined by

$$ \text{RMSRD} = \sqrt{\frac{\sum_{i=1}^{n} (\frac{y_i - x_i}{y_i})^2}{n}} $$

The ratio from the RMSRD might be very large due to uncertainties in both float and ocean color products applied to remote sensing reflectance.
...and OC data sets which bias the relative deviation. For this reason, a root-mean-square unbiased relative deviation (RMSURD) is also used, as defined by Hu et al. [2012]:

$$RMSURD = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - x_i}{0.5(x_i + y_i)} \right)^2}$$

(6)

The mean absolute error (ME) and mean unbiased relative error (MURE) are defined by

$$ME = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i)$$

(7)

$$MURE = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - x_i}{0.5(x_i + y_i)} \right)$$

(8)

3. Results

We compare the float-based estimates of chl a and POC with those derived by remote sensing algorithms, using float and OC matchups. For chl a concentrations, we find that the global OCI algorithm performs better than the SO-specific algorithms SPGANTv4 and J13 (Table 4 and Figure 3). In fact, the frequency distribution of the satellite data overlaps well with the frequency distribution of float observations (Figures 3c and 3f). The OCI algorithm underestimates, on average, the [chl a] by 9% for VIIRS whereas it overestimates it by 12% for MODIS. SPGANTv4 and J13 overestimate chl a, on average, by a factor of 2 for all regions combined.

OCI’s mean absolute deviation is on the order of 0.1 mg m$^{-3}$ and is significantly lower (by a factor between 3 and 4) than J13 and SPGANTv4. The relative deviation exhibits the same trend. These metrics suggest that the OCI algorithm performs better than J13 and SPGANTv4. However, the unbiased relative deviation (RMSURD) between the float and OC chl a of this study is higher (~45%) than for the matchups used to build the relationship of the color index (CI) algorithm of Hu et al. [2012] (32.7% for CI and 25.5% for OC3M). The deviation from the in situ data (RMSD and RMSRD) for MODIS and VIIRS sensors using J13 and SPGANTv4 algorithms was not reported in the relevant publications.

To study the biases, we analyze matchups as a function of the four distinct biogeochemical provinces of the SO. These regions are defined through the application of the Orsi et al. [1999] criteria to a ten-year Argo temperature and salinity climatology [Roemmich and Gilson, 2009] (A. Gray and S. Bushinsky, personal communication, 2017). The regressions for the Subantarctic Zone (SAZ) and Polar Antarctic Zone (PAZ), south of the subtropical front (STF), and north of the mean 2014–2015 September sea ice extent, have a smaller slope (0.84 ± 0.10) compared with the areas north and south of those boundaries, the Subtropical Zone (STZ) and the sea ice zone (SIZ), where the regression is 1.00 ± 0.10. On the other hand, for the STZ, SAZ, and PAZ, no significant offset is observed, whereas in the SIZ chl a is underestimated (~20%) by OCI.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Algorithm</th>
<th>Slope Linear</th>
<th>Offset Linear</th>
<th>r^2 Linear</th>
<th>$RMSD_{Linear}$</th>
<th>$RMSRD_{Linear}$</th>
<th>$RMSD_{Log}$</th>
<th>$RMSRD_{Log}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIS</td>
<td>OCI</td>
<td>0.88 (±0.04)</td>
<td>0.01 (±0.01)</td>
<td>0.67</td>
<td>0.11</td>
<td>0.73</td>
<td>0.45</td>
<td>0.58</td>
</tr>
<tr>
<td>MODIS</td>
<td>J13</td>
<td>0.35 (±0.02)</td>
<td>0.07 (±0.01)</td>
<td>0.66</td>
<td>0.43</td>
<td>1.74</td>
<td>0.74</td>
<td>0.60</td>
</tr>
<tr>
<td>MODIS</td>
<td>SPGANTv4</td>
<td>0.41 (±0.02)</td>
<td>0.05 (±0.01)</td>
<td>0.70</td>
<td>0.35</td>
<td>1.51</td>
<td>0.68</td>
<td>0.63</td>
</tr>
<tr>
<td>VIIRS</td>
<td>OCI</td>
<td>1.09 (±0.05)</td>
<td>−0.02 (±0.01)</td>
<td>0.61</td>
<td>0.10</td>
<td>0.61</td>
<td>0.44</td>
<td>0.50</td>
</tr>
<tr>
<td>VIIRS</td>
<td>J13</td>
<td>0.49 (±0.03)</td>
<td>0.05 (±0.01)</td>
<td>0.49</td>
<td>0.28</td>
<td>1.41</td>
<td>0.62</td>
<td>0.48</td>
</tr>
<tr>
<td>Both</td>
<td>OCI</td>
<td>0.97 (±0.03)</td>
<td>−0.00 (±0.01)</td>
<td>0.63</td>
<td>0.10</td>
<td>0.67</td>
<td>0.45</td>
<td>0.54</td>
</tr>
<tr>
<td>MODIS</td>
<td>POC</td>
<td>0.94 (±0.06)</td>
<td>−11.47 (±5.08)</td>
<td>0.37</td>
<td>31.46</td>
<td>0.72</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>VIIRS</td>
<td>POC</td>
<td>1.15 (±0.07)</td>
<td>−14.30 (±5.41)</td>
<td>0.34</td>
<td>28.60</td>
<td>0.57</td>
<td>0.38</td>
<td>0.40</td>
</tr>
<tr>
<td>Both</td>
<td>POC</td>
<td>1.05 (±0.05)</td>
<td>−12.85 (±3.79)</td>
<td>0.33</td>
<td>29.95</td>
<td>0.64</td>
<td>0.41</td>
<td>0.40</td>
</tr>
</tbody>
</table>

aThe standard deviation of the regression coefficients are in parentheses. The statistics are presented with the same data in both linear and log space.
bBoth MODIS and VIIRS satellites.
similar study was conducted filtering the matchups by seasons, but no significant bias or offset are observed for any season. During the winter no matchups are available in the SIZ and significantly lower chl values are observed in the other regions.

Since both OCI and SPGANT are blended algorithms, the matchups were analyzed for three ranges of chl concentration: $[chl_a] < 0.15$ mg m$^{-3}$, $0.15 < [chl_a] < 0.2$ mg m$^{-3}$, and $0.2 < [chl_a]$ mg m$^{-3}$ (Table 5). The same regression (linear type II) were used to conduct the analysis except that their intercept was forced to zero. At low chl a concentrations, both CI (from OCI) and OC3M (from SPGANT) have

Table 5. Statistics of Comparison Between the Float Measurements and Satellite Observations Grouped by Chlorophyll a Concentrations

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Algorithm</th>
<th>Subset (mg m$^{-3}$)</th>
<th>n</th>
<th>Slope</th>
<th>ME (mg m$^{-3}$)</th>
<th>MURE (Unitless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both*</td>
<td>OCI</td>
<td>ALL</td>
<td>376</td>
<td>0.98 (\pm0.03)</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>Both*</td>
<td>OCI</td>
<td>$[chl_a] < 0.15$</td>
<td>112</td>
<td>1.19 (\pm0.22)</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Both*</td>
<td>OCI</td>
<td>$0.15 < [chl_a] < 0.2$</td>
<td>80</td>
<td>1.08 (\pm0.53)</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>Both*</td>
<td>OCI</td>
<td>$0.2 < [chl_a]$</td>
<td>148</td>
<td>0.94 (\pm0.05)</td>
<td>-0.03</td>
<td>-0.15</td>
</tr>
<tr>
<td>MODIS</td>
<td>OCI</td>
<td>ALL</td>
<td>173</td>
<td>0.94 (\pm0.04)</td>
<td>0.02</td>
<td>0.12</td>
</tr>
<tr>
<td>MODIS</td>
<td>OCI</td>
<td>$[chl_a] < 0.15$</td>
<td>46</td>
<td>1.08 (\pm0.36)</td>
<td>0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>MODIS</td>
<td>OCI</td>
<td>$0.15 < [chl_a] < 0.2$</td>
<td>37</td>
<td>1.10 (\pm0.81)</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>MODIS</td>
<td>OCI</td>
<td>$0.2 < [chl_a]$</td>
<td>90</td>
<td>0.90 (\pm0.06)</td>
<td>0.05</td>
<td>0.18</td>
</tr>
<tr>
<td>MODIS</td>
<td>SPGANTv4</td>
<td>ALL</td>
<td>173</td>
<td>0.53 (\pm0.02)</td>
<td>0.22</td>
<td>0.51</td>
</tr>
<tr>
<td>MODIS</td>
<td>SPGANTv4</td>
<td>$[chl_a] < 0.15$</td>
<td>28</td>
<td>1.03 (\pm0.26)</td>
<td>0.00</td>
<td>0.11</td>
</tr>
<tr>
<td>MODIS</td>
<td>SPGANTv4</td>
<td>$0.15 < [chl_a] < 0.2$</td>
<td>15</td>
<td>0.96 (\pm1.37)</td>
<td>0.01</td>
<td>0.12</td>
</tr>
<tr>
<td>MODIS</td>
<td>SPGANTv4</td>
<td>$0.2 < [chl_a]$</td>
<td>130</td>
<td>0.50 (\pm0.03)</td>
<td>0.28</td>
<td>0.64</td>
</tr>
</tbody>
</table>

*Both MODIS and VIIRS satellites.
slope close to 1 (within 19%) and have no significant offset (<12%). At high chl a concentrations, OC3M (from OCI) performs significantly better than SPGANT, in fact the slope indicates that OC3M is overestimating [chl a] by 10% (which is within the uncertainty) whereas SPGANT overestimate it by 50%. Note that more low chl a concentration matchups are needed to quantify the improvement of CI versus OCx in the SO.

Float-based POC estimates agree well with NASA’s algorithm but also exhibit a large spread (relatively low prediction capability) in matchups (Table 4 and Figure 4). The uncertainty of the POC for both sensors (Table 4) is very close to the one from the algorithm used [Stramski et al., 2008] which has an RMSD = 21.3 mg m$^{-3}$, RMSRD = 21.7%, $r^2 = 0.87$, for N = 53. This supports the consistency of this product across the globe and the SO.

4. Discussion

We find that the SO-specific chl a algorithms [Mitchell and Kahru, 2009; Kahru and Mitchell, 2010; Johnson et al., 2013] overestimate [chl a] concentration in the SIZ region where we expected them to perform better than OCI. The reason may be that the data sets used in the SO studies come from restricted seasons and regions in the SO, while our float-based data are spread wider geographically (South Pacific and South East Atlantic) and temporally (cover evenly several season cycles) in the SO (compare
Johnson et al. [2013, Figure 1], and Figure 1 in this paper). Marrari et al. [2006] compared chl a from fluorometers calibrated with HPLC with chl a from SeaWiFS estimated with OC4v4. They concluded that no significant bias was observed, which is similar to what we find here with MODIS and VIIRS. The data set presented here shows small biases between regions of the SO, however, more matchups are needed to address spatial and temporal biases. Those biases may be related to specific physiological state and species composition as Dierssen [2010] and the IOCCG [2015] report suggest.

In this analysis, we assume the ratio of chl a to fluorescence yield (fl) to be constant (Figure 3), however, the variability is large [Cullen, 1982; Roesler et al., 2017]. Phytoplankton acclimate to light intensity, nutrient concentrations, trace metals concentrations, and extremely cold temperatures [Cullen, 2015; Behrenfeld et al., 2005; Dierssen, 2010] by changing their intercellular chl a concentration and their fluorescence yield. In addition, this ratio also varies with species composition [Proctor and Roesler, 2010]. Variability in the chl a:fl ratio could, potentially, be modeled with parameters such as PAR, temperature, day of the year, and nutrient concentration in order to enhance our measurements of phytoplankton biomass with both autonomous platforms and satellites.

Nonphotochemical quenching NPQ corrections [Sackmann et al., 2008; Xing et al., 2012] used to produce our float data set [Johnson et al., 2017] could introduce significant uncertainty in the chl a concentration estimated from the fluorometers. However, we find that removing the NPQ corrected data from the relation with HPLC chl a (used here) changed the slope factor by less than 10%, suggesting that NPQ does not bias the observed relationship. Moreover, no significant bias was observed comparing day-time measurements (NPQ corrected) of chl a by floats against OCI chl a with nighttime ones (slopes of 0.89 and 1.10, respectively). However, day-time (NPQ corrected) concentrations of chl a are slightly offset (overestimate of 21% by OCI). The quality of both relationships could potentially be improved by using mechanistic models or by using a radiometer in addition to the chl a fluorometer to compute chl a [Xing et al., 2011]. Such radiometers are recommended for BGC floats [Johnson and Claustre, 2016].

To test whether the float data set is biased, we use an independent data set of 6242 HPLC samples from 1682 profiles between October 1995 and April 2011 from NASA’s SeaBASS database (all the data available on 1 February 2017, south of 30°S) is to compare with MODIS OCI matchups (no image available for VIIRS). Out of the 659 matchups, only 97 respected the criteria we used here (Figure 5). The slope of the regression between the in situ and OCI chl a is similar to the one obtained with the float comparison, which supports the relationship developed in Figure 3.

The comparison between OC and float POC (Figure 4) is likely biased, as our in situ POC measurements include some dissolved organic material (DOC) adsorbed by the filter which should result in an overestimation of the POC product estimated for the float. A recent analysis (I. Cetinić, personal communication, 2016) suggests, for the amount of water filtered, a likely bias of 33–38 (± 1.3) mg m$^{-3}$. On the other hand, frequency distributions of float POC overall underestimated the POC concentration (Figure 4c), which is inconsistent with the argument above.

Figure 6. Frequency distribution of phytoplankton carbon (C_{phyto}) to chlorophyll a ratio (in g C g $chl a^{-1}$) from all the SOCCOM and pre-SOCCOM floats grouped by regions. From North to South the regions are Subtropical Zone (STZ), Subantarctic Zone (SAZ), Polar Antarctic Zone (PAZ), and sea ice zone (SIZ).
The ratio of chl a to phytoplankton carbon (Cphyto) is compared to previous studies to further validate our float data set. Cphyto is computed with the method from Graff et al. [2015] based on \(b_{490}(470) \). The shift in particulate backscattering wavelength is estimated with \(b_{490}(\lambda) = b_{490}(700) \left(\frac{700}{\lambda} \right)^{3.5} \), with \(\gamma = 0.78 \) [Bos et al., 2013] assuming a spectrally invariant particulate backscattering ratio. The \(C_{\text{phyto}}/\text{chl a} \) computed is consistent with the range (20 to >200 g C g chl a\(^{-1}\)) observed for phytoplankton cultures [e.g., Taylor et al., 1997], the range (75–250 g C g chl a\(^{-1}\)) inferred for the SO by Behrenfeld et al. [2005], and broader than the range (20–100 g C g chl a\(^{-1}\)) of Thomalla et al. [2017] for the SO (Figure 6). Consistent with Reynolds et al. [2001] who observed a larger \(b_{490} \text{chl a} \) ratio in the SIZ, we observe a similar trend in the \(C_{\text{phyto}}/\text{chl a} \).

5. Conclusion

Our results support the use of the OCI algorithm in the SO. OCI, the default algorithm to estimate chl a from NASA, performs well in the SO (average bias of 9% and 12% for VIIRS and MODIS, respectively) and suggests that no specific algorithms is required for this region. With our data set, OCI performs better than SO-specific algorithms in the SIZ (offset of ~20% for OCI and ~45% for SPGANTv4). This might be explained by the subregion and seasons used to develop these algorithms (not representative of the whole SIZ), however, more matchups are needed to better constrain the relationship. While float data have significant uncertainties in estimating chl a and POC, the large dynamic range in the SO and consistency in the data support the use of profiling floats for validation of satellite-based biogeochemical algorithm performance. POC derived from MODIS and VIIRS agrees well with the float product within the uncertainty specified. The biogeochemical data set from our pre-SOCCOM and SOCCOM autonomous floats are consistent with OC products (chl a, POC) and can be used as the third dimension (depth) and provide winter coverage to complement remote sensing in the Southern Ocean.

References
